350 rub
Journal Information-measuring and Control Systems №4 for 2024 г.
Article in number:
Evaluation of the influence of distortions of the digital object model on the result of synthetic aperture radar image modelling
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202404-04
UDC: 004.932.4:621.396.96
Authors:

M.A. Kriachko1, A.V. Medzigov2, I.E. Morozov3

1–3St. Petersburg State University of Aerospace Instrumentation St Petersburg, Russia,

1LTD «Lukoil Technology» Moscow, Russia,

2Federal State Unitary Enterprise «State Research Institute of Applied Problems» St Petersburg, Russia

1mike_kr@mail.ru, 2medzigov@ya.ru, 3caf21@guap.ru

Abstract:

An essential problem in radar image processing is the synthesis of optimal and quasi-optimal algorithms for the formation of a vector of sufficient statistics and, as a consequence, for obtaining the features used to classify an object of observation. For this purpose it is required to consider the influence of distortions of digital three-dimensional models of objects on the results of modelling images obtained for synthetic aperture radar. Aim of article – to develop and evaluate the possibilities of the method of geometrical optics in the process of application of ray tracing apparatus for the cases of diffuse and specular reflection of waves from the surface of a reflecting object while evaluating the influence of angular distortions of a digital 3D model of an object on the results of modelling.

The method of taking into account the theoretical relationship between the magnitude of coordinate distortions of the digital model and the magnitude of distortion of the received radar image is proposed. The paper evaluates the influence of distortions of digital models of three-dimensional (3D) objects on the results of modelling images obtained for synthetic aperture radar. The presented method of taking into account the influence of distortions of the digital 3D model of the object on the results of radar image modelling allows to estimate the conditions of applicability of the ray tracing method.

Pages: 35-44
For citation

Kriachko M.A., Medzigov A.V., Morozov I.E. Evaluation of the influence of distortions of the digital object model on the result of synthetic aperture radar image modelling. Information-measuring and Control Systems. 2024. V. 22. № 4. P. 35−44. DOI: https://doi.org/10.18127/j20700814-202404-04 (in Russian)

References
  1. Skolnik M.I. Spravochnik po radiolokatsii. V 4-kh tomakh. M.: Sov. radio. 1978. (in Russian)
  2. Skolnik M.I. Spravochnik po radiolokatsii. V 2-kh knigakh. M.: Tekhnosfera. 2014. (in Russian)
  3. Verba V.S. Radiolokatsiya dlya vsekh. M.: Tekhnosfera. 2020. ISBN: 978-5-94836-555-8.4. (in Russian)
  4. Verba V.S. Obnaruzhenie nazemnykh ob'ektov. Bortovye radiolokatsionnye sistemy obnaruzheniya i tseleukazaniya. M.: Radiotekhnika. 2007. ISBN: 978-5-88070-156-8. (in Russian)
  5. Botov M.I. Osnovy teorii radiolokatsionnykh sistem i kompleksov. Krasnoyarsk: Izd-vo Sibirskogo federalnogo universiteta. 2007. ISBN: 978-5-7638-2933-4. (in Russian)
  6. Woodhouse I. Introduction to Microwave Remote Sensing. Boca Raton: CRC Press. 2005. ISBN: 9781315272573.
  7. Zherdev D.A., Kazanskii N.L., Fursov V.A. Raspoznavanie ob'ektov na radiolokatsionnykh izobrazheniyakh s ispolzovaniem indeksov sopryazheniya i opornykh podprostranstv. Kompyuternaya optika 2015. 39(2). 255-264. DOI: 10.18287/0134-2452-2015-39-2-255-264. (in Russian)
  8. Kazanskii N.L. i dr. Modelirovanie i raspoznavanie radiolokatsionnykh izobrazhenii. Trudy SPIE - Mezhdunar. obshchestva opticheskoi inzhenerii. 2020. 11516. 115161J. DOI: 10.1117/12.2566467. (in Russian)
  9. Borodinov A.A., Myasnikov V.V. Comparison of classification algorithms in the task of object recognition on radar images of the MSTAR base. CEUR Workshop Proceedings. 2017. 1901. 37−41. DOI: 10.18287/1613-0073-2017-1901-37-41.
  10. Borodinov A.A., Myasnikov V.V. Influence of preprocessing of radar images on neural network recognition accuracy. Proceedings of SPIE - The International Society for Optical Engineering. 2018. 10788. 1078803. DOI: 10.1117/12.2325676.
  11. Auer S. 3D Syntetic Aperture Radar Simulation for Interpreting Complex Urban Reflection Scenarios. German Geodetic Commission at the Bavarian Academy of Sciences: Dissertations: Series C. 2011.
  12. Balz T., Hammer H., Auer S. Potentials and limitations of SAR image simulators – A comparative study of three simulation approaches. ISPRS Journal of Photogrammetry and Remote Sensing. 2015. 101. 102-9. DOI: 10.1016/j.isprsjprs.2014.12.008.
  13. Cumming I., Wong F. Digital Processing of Synthetic Aperture Radar Data. Massachusetts: Artech House. 2005. ISBN: 9781580530583.
  14. Amananatides J., Woo A. A Fast Voxel Traversal Algorithm for Ray Tracing. Proc. Eurographics. 1987. 87. 3–10.
  15. Auer S., Gernhardt S., Eder K. Evaluation of persistent scatterer patterns at building facades by simulation techniques. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2013. XL-1/W1. 7−12. DOI: 10.5194/isprsarchives-XL-1-W1-7-2013.
  16. Auer S., Hinz S., Bamler R. Ray-tracing simulation techniques for understanding high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2010. 48(3). 1445−1456. DOI: 10.1109/TGRS.2009.2029339.
  17. Auer S., Gernhardt S., Bamler R. Ghost persistent scatterers related to signal reflections between adjacent buildings. IEEE International Geoscience and Remote Sensing Symposium. 2011. 1445−1456. DOI: 10.1109/IGARSS.2011.6049348.
  18. Brunner D., Lemoine G., Greidanus H., Bruzzone L. Radar imaging simulation for urban structures. IEEE Geosci. Remote Sens. Lett. 2011. 8(1). 68−72. DOI: 10.1109/lgrs.2010.2051214.
  19. Franceschetti G., Migliaccio M., Riccio D. The SAR simulation: an overview. Proceedings of International Geoscience and Remote Sensing Symposium. 1995. 2283−2285. DOI: 10.1109/IGARSS.1995.524171.
Date of receipt: 27.06.2024
Approved after review: 11.07.2024
Accepted for publication: 23.07.2024