350 rub
Journal Information-measuring and Control Systems №4 for 2024 г.
Article in number:
Development of hardware and algorithms for the wearable monitoring device for the motor activity of the human cervical spine
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202404-03
UDC: 616-71:612.741.1
Authors:

O.V. Tikhonenkova1, T.V. Sergeev2, N.B. Suvorov3

1−3 Saint-Petersburg State University of Aerospace Instrumentation (Saint-Petersburg, Russia)

1krivohizhinaov@gmail.com

Abstract:

The article discusses the theoretical prerequisites for the development of a monitoring system for determining the position, movements and tilts of the human head. Purpose of the study: development of hardware and algorithms for the specified system. Results. A three-point model has been developed that takes into account the structural and motor characteristics of the cervical spine. The choice of reference points for installing sensors is justified. Options for moving these sensors for different positions of the human head are shown. The static and dynamic indicators necessary to assess the movements of the cervical spine are described. The developed system is described – a hardware and software complex for monitoring the position, movements and tilts of the human head, a block diagram and the electronic components used are presented. The prospects for further development and application of the developed system are considered. Discussion. The system being developed will become the basis for creating a medical complex that will provide diagnoses related to the violation of the morphological and functional relationship of the blood circulation and the osseous-ligamentous apparatus, support decision-making by the doctor and the possibility of its correction by means of biocontrol.

Pages: 23-34
For citation

Tikhonenkova O.V., Sergeev T.V., Suvorov N.B. Development of hardware and algorithms for the wearable monitoring device for the motor activity of the human cervical spine. Information-measuring and Control Systems. 2024. V. 22. № 4. P. 23−34. DOI: https://doi.org/10.18127/j20700814-202404-03 (in Russian)

References
  1. Krasnoyarova N.A., Sabinin S.L. Biomekhanika sheinogo otdela pozvonochnika i korrektsiya ee narushenii: Rukovodstvo dlya vrachei. Almaty. 2007. (in Russian)
  2. Jeffreys E. Disorders of the Cervical Spine. Elsevier Science. 2013.
  3. Shedid D., Benzel E.C. Cervical spondylosis anatomy: pathophysiology and biomechanics. Jan. 2007. Neurosurgery. V. 60. № 1. P. S1-7−S1-13.
  4. Sinelnikov R.D., Sinelnikov Ya.R., Sinelnikov A.Ya. Atlas anatomii cheloveka. T. 1. Osteologiya. Artrologiya. Miologiya. Novaya volna. 2020. (in Russian)
  5. Hamaoui A. Influence of Cervical Spine Mobility on the Focal and Postural Components of the Sit-to-Stand Task. Front. Hum. Neurosci. 2017. P. 10.
  6. Karmadonov V.Yu. Metody otslezhivaniya polozheniya v virtualnoi realnosti. Academy. 2019. № 12 (51). S. 19−22. (in Russian)
  7. Feng M., Liang L., Sun W., Liu G.W., Yin X., Han T., at al. Measurements of cervical range of motion using an optical motion capture system: Repeatability and validity. Experimental and Therapeutic Medicine. Oct. 2019. V. 18. № 6. P. 4193−4202.
  8. Shchekoldin A.I., Dema N.Yu., Shevyakov A.D., Kolyubin S.A. Otslezhivanie i klassifikatsiya dvizheniya golovy po dannym nashlemnogo inertsialnogo izmeritelnogo modulya. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki. 2017. № 5. S. 798−804. (in Russian)
  9. Duc C., Salvia P., Lubansu A., Feipel V., Aminian K. A wearable inertial system to assess the cervical spine mobility: Comparison with an optoelectronic-based motion capture evaluation. Medical engineering and Physics. 2014. V. 36. P. 49−56.
  10. Voinea G., Butnariu S., Morgan G. Measurement and Geometric Modelling of Human Spine Posture for Medical Rehabilitation Purposes Using a Wearable Monitoring System Based on Inertial Sensors. Sensors. 2017. 17(1). 3.
  11. Lo Presti D., Carneval A., D’Abbraccio J. at al. A Multi-Parametric Wearable System to Monitor Neck Movements and Respiratory Frequency of Computer Workers. Sensors. 2020. 20(2). 536.
  12. Danilova A.S., Tikhonenkova O.V., Sergeev T.V., Chkhindzheriya A.B. Obzor opticheskikh i inertsialnykh sistem registratsii vzaimnogo polozheniya i peremeshcheniya struktur pozvonochnika cheloveka. Biomeditsinskaya radioelektronika. 2022. T. 25. № 1. S. 20−30. (in Russian)
  13. Tikhonenkova O.V., Tsurkov S.A., Sergeev T.V., Danilova A.S. Sistema opredeleniya polozheniya, dvizhenii i naklonov golovy cheloveka dlya ortopedii. XXIV Mezhdunar. nauch. konf. "Volnovaya elektronika i infokommunikatsionnye sistemy". SPb. 31 maya – 4 iyunya 2021. Sb. statei v 3-kh chastyakh. 2021. Ch.1. SPb.: GUAP. S. 300−306. (in Russian)
  14. Alekseev V. Novye mnogofunktsionalnye MEMS-datchiki dvizheniya proizvodstva STMicroelectronics. Datchiki. 2015. № 11. S. 7−14. (in Russian)
  15. ATmega328P. 8-bit AVR microcontroller with 32K bytes in-system programmable flash. Datasheet. Atmel Corporation. 2015.
  16. FT232R USB UART IC Datasheet Version 2.16. Future Technology Devices International Limited. 2020.
  17. Mahony R. Nonlinear Complementary Filters on the Special Orthogonal Group. IEEE Transactions on Automatic Control. Sidney. 2008. S. 1203−1218.
  18. Madgwick S. An efficient orientation filter for inertial and inertial magnetic sensor arrays. University of Bristol. 2010. 21 c.
  19. Yatsyna Yu. Sravnitelnyi analiz diskretnykh filtrov Kalmana i Madzhvika. Nauka i innovatsii. 2017. T. 2. № 168. S. 22−24. (in Russian)
  20. Sergeenkov D.D. Eksperimentalnoe sravnenie algoritmov opredeleniya orientatsii dlya multikopterov. Mezhdunarodnyi zhurnal informatsionnykh tekhnologii i energoeffektivnosti. 2019. T. 4. № 2(12). S. 31−40. (in Russian)
  21. Arraigada M., Manfred P. Calculation of displacements of measured accelerations, analysis of two accelerometers and application in road engineering. 6-th Swiss Transport Research Conference. Ascona. 2016. 31 c.
  22. Sergeeva Z.D. Sravnenie algoritmov filtratsii signalov akselerometrov i giroskopov. 74 Mezhdunar. studencheskaya nauchnaya konf. GUAP. Ch. 1: Tekhnicheskie nauki. SPb.: GUAP. 2021. S. 250−254 s. (in Russian)
  23. Danilova A.C., Gorelova N.A., Sergeeva Z.D., Sergeev T.V., Tikhonenkova O.V., Yafarov A.Z. Algoritm obrabotki i analiza dannykh o polozhenii, dvizheniyakh i naklonakh golovy cheloveka. Datchiki i Sistemy. 2022. № 5. S. 65−72. DOI: 10.25728/datsys.2022.5.13. (in Russian)
Date of receipt: 26.06.2024
Approved after review: 10.07.2024
Accepted for publication: 23.07.2024