350 rub
Journal Information-measuring and Control Systems №2 for 2024 г.
Article in number:
Algorithm of continuous error correction of the free-form inertial navigation system (INS) as part of the on-board equipment of a general-purpose helicopter
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202401-06
UDC: 621.396.988.6:629.19, 004.021
Authors:

A.I. Rysin1

1Ulyanovsk State Technical University (Ulyanovsk, Russia)

1rysin88@mail.ru

Abstract:

In the article the problem of ensuring the accuracy of the output navigation information of a free-form inertial navigation system is considered in relation to the typical composition of the onboard equipment of a general-purpose helicopter.

At the beginning of the article, the author notes that along with the advantages of the INS, which determined its choice as the main navigation system, the errors of the navigation parameters measured by it increase over time, which determines the need to correct them on measurements from other navigation systems. As the author points out, different methods that can be used for a helicopter only in a limited way were previously proposed. For example, they did not fully take into account the INS error model, the specifics of the object movement, and also required significant hardware costs. Next, the author examines the main navigation systems from the onboard equipment installed on general-purpose helicopters, gives their advantages and disadvantages. The main task, according to the author, is the possibility on board the aircraft of continuous assessment and correction of INS errors by external measurements. To solve this problem, the author presents a basic algorithm for estimating and subsequent correction of measurement errors of the INS by measurements of the satellite radio navigation system or the Doppler speed sensor from the helicopter's onboard equipment and provides restrictions on the solution being developed. At the same time, A.I. Rysin notes that it is also necessary to evaluate the accuracy of the solution obtained based on flight data and make a conclusion about its applicability on board the aircraft.

A.I. Rysin presents a complete stochastic INS error model, the state vector of which consists of 18 elements, and an observation model based on difference measurements of the INS and either a satellite navigation system (SNS) or a Doppler speed sensor. The presented models and correction algorithm, the author notes, firstly, make it possible to obtain a general solution for positional and high-speed channels for navigation information, and secondly, they are implemented as part of on-board digital computers. The author of the article confirms these provisions by presenting the results of mathematical modeling using registered flight data.

In conclusion, A.I. Rysin presents results of the statistical analysis of the errors in measuring the coordinates and speed of the integrated navigation complex and a comparative analysis of the accuracy of the results of various integration algorithms, This data allow us to talk about ensuring the required accuracy of determining the speed formed by the integrated navigation complex of a helicopter consisting of free-form INS and SNS or Doppler speed sensor equipment.

Pages: 51-66
For citation

Rysin A.I. Algorithm of continuous error correction of the free-form inertial navigation system (INS) as part of the on-board equipment of a general-purpose helicopte. Information-measuring and Control Systems. 2024. V. 22. № 1. P. 51−66. DOI: https://doi.org/10.18127/j20700814-202401-06 (in Russian)

References
  1. Upravlenie i navedenie bespilotnykh manevrennykh letatelnykh apparatov na osnove sovremennykh informatsionnykh tekhnologii. Pod red. M.N. Krasilshchikova i G.G. Sebryakova. M.: FIZMATLIT. 2003. 280 s. (in Russian)
  2. Stepanov O.A. Integrirovannye inertsialno-sputnikovye sistemy navigatsii: Sb. st. i dokl.. Pod red. V.G. Peshekhonova SPb.: GNTs RF AO "Kontsern "TsNII "Elektropribor". 2004. 235 s. (in Russian)
  3. Efanov V.N., Tuzbekov R.M. Printsipy formirovaniya optimalnogo oblika bortovogo oborudovaniya perspektivnogo vertoleta. Vestnik UGATU. 2014. T. 18. № 2(63). S. 103−112. (in Russian)
  4. Starovoitov E.I. Optimizatsiya kharakteristik BINS i datchikov vneshnei korrektsii dlya avtonomnoi navigatsii bespilotnykh letatelnykh apparatov raznykh klassov. Radiostroenie (nauchno-prakticheskii zhurnal). 2020. № 3. S. 1−19. (in Russian)
  5. Bolotin Yu.V., Fatekhrad M. Navigatsiya peshekhoda s ispolzovaniem besplatformennoi inertsialnoi navigatsionnoi sistemy (BINS), ustanovlennoi na stope. Rossiiskii zhurnal biomekhaniki. 2015. T. 19. № 1. S. 25−36. (in Russian)
  6. Nikitin I.V. Zadacha navigatsii nazemnogo ob'ekta na osnove dannykh BINS i odometra. Dis. kand. fiz.-mat. nauk. M.: 2015. 89 s. (in Russian)
  7. Groshev A.V., Frolova O.A. Pomekhoustoichivyi adaptivno-robastnyi algoritm kontrolya dannykh v kompleksnoi inertsialno-sputnikovoi navigatsionnoi sisteme. Upravlenie bolshimi sistemami (M.: IPU RAN). 2018. Vyp. 74. S. 63−80. (in Russian)
  8. Babich O.A. Primenenie metoda Pikara dlya vychisleniya korrelyatsionnykh matrits v diskretnoi stokhasticheskoi modeli pogreshnostei besplatformennoi inertsialnoi sistemy. Navigatsiya i upravlenie letatelnymi apparatami. 2017. № 16. S. 2−15. (in Russian)
  9. Zorina O.A., Izmailov E.A., Kukhtevich S.E., Portnov B.I., Fomichev A.V., Vavilova N.B., Golovan A.A., Papusha I.A., Parusnikov N.A. O rasshirenii vozmozhnostei integratsii inertsialnykh i sputnikovykh navigatsionnykh sistem v aviatsionnykh prilozheniyakh. Giroskopiya i navigatsiya. 2017. T. 25. № 2 (97). S. 18−34. (in Russian)
  10. Kanakov A.S., Shavrin V.V., Tislenko V.I., Savin A.A. Sravnitelnyi analiz srednekvadraticheskoi pogreshnosti opredeleniya koordinat ob'ekta v besplatformennoi inertsialnoi navigatsionnoi sisteme pri ispolzovanii razlichnykh algoritmov nelineinoi filtratsii. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki. 2012. № 1-1 (25). S. 5−9. (in Russian)
  11. Patent № 2614192 RF. MPK G01C 21/20 (2006.01). Sposob otsenivaniya oshibok inertsialnoi informatsii i ee korrektsii po izmereniyam doplerovskogo izmeritelya skorosti: № 2015151480: zayavl. 02.12.2015: opublikovano 23.03.2017/ Dzhandzhgava G.I., Bazlev D.A., Gerasimov G.I., Lobko S.V., Brazhnik V.M., Kavinskii V.V., Kurdin V.V., Pryadilshchikov A.P., Negrikov V.V., Orekhov M.I., Linnik M.Yu., Manokhin V.I., Trebukhov A.V., Gabbasov S.M., Korkishko Yu.Yu., Kuznetsov A.I.; zayavitel AO "RPKB". (in Russian)
  12. Fokin L.A., Shiryaev V.I., Podivilova E.O. Ob analize pogreshnostei integrirovannoi navigatsionnoi sistemy i metodakh ikh otsenivaniya. Vestnik YuUrGU. 2012. № 35. S. 127−134. (in Russian)
  13. Stepanov O.A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Ch.1. Vvedenie v teoriyu otsenivaniya. Izd. 3-e, ispr. i dop. SPb.: GNTs RF AO "Kontsern "TsNII "Elektropribor". 2017. 509 s. (in Russian)
  14. Golovan A.A., Parusnikov N.A. Matematicheskie osnovy navigatsionnykh sistem: Ch. 1: Matematicheskie modeli inertsialnoi navigatsii. Izd. 3-e, ispr. i dop. M.: MAKS Press. 2011. 136 s. (in Russian)
  15. Stepanov O.A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Ch.2. Vvedenie v teoriyu filtratsii. Izd. 3-e, ispr. i dop. SPb.: GNTs RF AO "Kontsern "TsNII "Elektropribor". 2017. 428 s. (in Russian)
  16. Gen K., Chulin N.A. Integrirovannaya navigatsionnaya sistema dlya bespilotnykh letatelnykh apparatov s vozmozhnostyu obnaruzheniya i izolyatsii neispravnostei. Nauka i Obrazovanie (elektronnyi zhurnal MGTU im. N.E. Baumana). 2016. № 12. S. 182−206. (in Russian)
  17. Fomichev A.V., Tan L. Razrabotka algoritma bystroi kompensatsii pogreshnostei kompleksirovannoi inertsialno-sputnikovoi sistemy navigatsii malogabaritnykh bespilotnykh letatelnykh apparatov v usloviyakh slozhnoi sredy. Nauka i Obrazovanie (elektronnyi zhurnal MGTU im. N.E. Baumana). 2015. № 10. S. 252−270. (in Russian)
  18. Al Bitar N., Gavrilov A.I. O Sravnitelnyi analiz algoritmov kompleksirovaniya v slabosvyazannoi inertsialno-sputnikovoi sisteme na osnove obrabotki realnykh dannykh. Giroskopiya i navigatsiya. 2019. T. 27. № 3 (106). (in Russian)
  19. Tsibizova T.Yu., Shen Kai, Neusypin K.A. Issledovanie algoritmov otsenivaniya v zadache korrektsii navigatsionnykh sistem letatelnykh apparatov. Fundamentalnye issledovaniya. 2015. № 6. (in Russian)
  20. Pervukhin D.A., Kolesnichenko S.V. Navigatsionno-vremennoe obespechenie sistem upravleniya vysokodinamichnymi podvizhnymi ob'ektami. Zapiski Gornogo instituta. 2015. T. 213. (in Russian)
Date of receipt: 16.01.2024
Approved after review: 12.02.2024
Accepted for publication: 26.03.2024