350 rub
Journal Information-measuring and Control Systems №2 for 2024 г.
Article in number:
Faraday effect in an alternating magnetic field: a mathematical model
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202401-03
UDC: 535-4
Authors:

A.A. Shvachko1, N.J. Zulfikar2, V.V. Matyushkin3

1−3 Yuri Gagarin State Technical University of Saratov (Saratov, Russia)

1alexandr1899@gmail.com, 2zulfikarsgu@mail.ru, 3vladisla7@mail.ru

Abstract:

When creating magnetic focusing systems, for example, for traveling wave lamps, there are known problems associated with the need to adjust the electron flow moving in a given direction along the axis of the device, that is, to align its axis with the magnetic axis of the focusing system. Ideal adjustment of the device is very difficult to achieve due to many influencing factors, therefore, it becomes necessary to create automated complexes for simulating the alignment of the electron beam in the magnetic field formation system in focusing systems. Alignment problems can be solved using magneto-optical methods, since it is known that when exposed to a magnetic field, light exhibits a number of similar properties (reaction) when exposed to magnetic fields.

The aim of the work is to create a mathematical model for the passage of a light beam through an alternating magnetic system based on the Faraday effect.

As a result, a mathematical model has been obtained, which should allow modeling the change in the plane of polarization of light during the passage (movement of the magneto-optical sensor) along the axis of the magnetic system. The simulation of the passage of light according to the Faraday effect through a magnetic system of one and five magnets is considered.

The development of the presented mathematical model allows in the future to create an installation for recording (and adjusting) the meningitis field of sign-variable focusing magnetic systems. Also, this mathematical model can be further used (when writing software based on it) for the educational process as a tool for studying magneto-optical effects.

Pages: 23-30
For citation

Shvachko A.A., Zulfikar N.J., Matyushkin V.V. Faraday effect in an alternating magnetic field: a mathematical model. Information-measuring and Control Systems. 2024. V. 22. № 1. P. 23−30. DOI: https://doi.org/10.18127/j20700814-202401-03 (in Russian)

References
  1. Vasichev B.N., Fatyanova G.I. Konstruirovanie elektronno-opticheskikh sistem mikrosistemnoi elektronno-luchevoi tekhniki. Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2006. № 9. S. 26−31. (in Russian)
  2. Shvachko A.A., Zakharov A.A. K modelirovaniyu yustirovki elektronnogo potoka v magnitnykh fokusiruyushchikh sistemakh. Matematicheskie metody v tekhnike i tekhnologiyakh-MMTT. 2013. № 10−2. S. 53−55. (in Russian)
  3. Savelev I.V.; Savelev I.V. Kurs obshchei fiziki: uchebnoe posobie dlya studentov vysshikh uchebnykh zavedenii, obuchayushchikhsya po tekhnicheskim napravleniyam i spetsialnostyam: v 4-kh tomakh. Pod obshch. red. V.I. Saveleva. Izd. 2-e, ster. M.: KnoRus. 2012. 570 s. (in Russian)
  4. Trofimova T.I. Kurs fiziki. Izd. 20-e. M.: Izdatelskii tsentr "Akademiya". 2014. 560 s. (in Russian)
  5. Deineka I.G., Shramko O.A., Tarakanov S.A. Izuchenie magnitoopticheskogo effekta Faradeya. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki. 2008. № 49. S. 84−89. (in Russian)
  6. Tsukanov B.D. Magnitnoe vrashchenie ploskosti polyarizatsii v prozrachnykh sredakh. Sovremennye problemy fiziko-matematicheskikh nauk. 2020. S. 570−576. (in Russian)
  7. Paranin V.D., Sinitsyn L.I. Matematicheskoe modelirovanie odnokaskadnogo magnitoopticheskogo datchika na osnove prodolnogo effekta Faradeya. Materialy Vseros. nauch.-tekhn. konf. "Aktualnye problemy radioelektroniki i telekommunikatsiй". Samara, 16−18 maya 2017 g. Samarskii NIU im. S.P. Koroleva. Samara: OOO "Ofort". 2017. S. 164−167. (in Russian)
  8. Mavritskiй O.B. Effekt Faradeya v magnitnykh plѐnkakh. Laboratornyй praktikum po fizike kondensirovannogo sostoyaniya: Ucheb. posobie. M.: NIYaU MIFI. 2012. 72 s. (in Russian)
  9. Gorbatenko N.I., Grechikhin V.V., Kyong N.M. Kombinirovannaya matematicheskaya model magnitnogo polya dlya avtomatizirovannoi selektivnoi sborki elektromagnitov. Izvestiya vuzov. Elektromekhanika. 2010. № 5. S. 43−47. (in Russian)
  10. Narakidze N.D., Lankin M.V. Opredelenie struktury matematicheskoi modeli raspredeleniya magnitnogo polya. Izvestiya vuzov. Severo-Kavkazskii region. Tekhnicheskie nauki. 2007. № S1. S. 92−94. (in Russian)
Date of receipt: 25.12.2023
Approved after review: 16.01.2024
Accepted for publication: 26.03.2024