350 rub
Journal Information-measuring and Control Systems №6 for 2023 г.
Article in number:
Design of a measuring device and installation for determining thermal conductivity of rocks by the absolute stationary flat layer method
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202306-07
UDC: 536.21:592:621
Authors:

E.N. Ramazanova1

1 Financial University under the Government of the Russian Federation

1 enramazanova@fa.ru

Abstract:

The study of thermal conductivity of rocks and obtaining new experimental data depending on high pressures, temperatures and fluid saturation is essential for the efficient and sustainable operation of the oil industry. However, in the process of studying the thermal conductivity of porous rock samples saturated with water in laboratory conditions using the absolute stationary method of flat plates, difficulties arise associated with the process of moisture loss due to the influence of temperatures above the boiling point.

Improvement of the methodology and instrument for conducting experimental studies and obtaining the values of the thermal conductivity of rocks with porosity and saturated with fluid under conditions close to the conditions of occurrence in the reservoirs, namely, taking into account the influence of high temperatures and pressures.

The technique for conducting experimental studies of the thermal conductivity of porous rocks saturated with fluid in the process of exposure to high temperatures and pressures corresponding to the reservoir conditions has been improved and practically implemented.

Pages: 55-63
For citation

Ramazanova E.N. Design of a measuring device and installation for determining thermal conductivity of rocks by the absolute stationary flat layer method. Information-measuring and Control Systems. 2023. V. 21. № 6. P. 55−63. DOI: https://doi.org/10.18127/j20700814-202306-07 (in Russian)

References
  1. Misnar A. Teploprovodnost tverdykh tel, zhidkostei, gazov i ikh kompozitsii. M.: Mir. 1968. 464 s. (in Russian)
  2. Maxswell I.K. A Trestic on Electrisiti and Magnetism. Oxford Univ. Press. 1873.
  3. Lichteneker K. Physikalische Zc.. 1926. 27. 115−118.
  4. Amirkhanov Kh.I. Avtorskoe svidetelstvo № 81591, kl. 421,12,02. Gostekhnika SSSR. № 386141. 1948. (in Russian)
  5. Abdulagatov I.M., Emirov S.N., Gairbekov Kh.A., Askerov S.Ya., Ramasanova E.N. Effective Thermal Conductivity of Fluid Saturated Porous Mica-Ceramics at High Temperatures and High Pressures. J. Ind. End. Chem. Res. 2002. 41. P. 3586−3593.
  6. Abdulagatov I.M., Emirov S.N., Tsomaeva T.A., Gairbekov Kh.A., Askerov S.Ya., Magomaeva M.A. Thermal conductivity fused quartz and quartz ceramic at high temperatures and high pressure. J. Phys. and Chem. of Solids. 2000. 61. P. 779−787.
  7. Devyatkova E.D., Petrova A.P., Smirnov I.A. Plavlenyi kvarts kak obraztsovyi material pri izmerenii teploprovodnosti. Fizika tverdogo tela. 1960. 740 s. (in Russian)
  8. Klemens P.S. Theory of the pressure dependence of the lattice thermal conductivity. Solid St. Physics. 1958.
    (Proc 7 Symposium on Thermo. Klemens P.G. Theory of Thermal Conductivity of dielectric solids: effect of defect and microstructure at high Temperatures. Proc.7 symposium on Therm. Phys. properties. Hol., 1977. New-Jork. 1977. № 4).
  9. Ziman J.M. Electrons and fonons. The Theory of transport phonons in Solids. Ox Ford. 1960. (Zaiman Dzh. Elektrony i fonony. Teoriya yavlenii perenosa v tverdykh telakh. M. 1962. 488 s).
  10. Einstein A. Elementare Betrachtungen über die thermische Molekularbewegung in festen Korpern. Ann. Phys. 1911. 35. 679.
  11. Einstein A. Die Plancksche Theorie der Strahlung und die Theorie der specifiscen Warme. Ann. Phys. 1907. 22. 180.
  12. Euchen A., Debye R. Vorträge über die Kinetische Theorie der Materie und Electricitat. Berlin. 1914.
  13. Eucken A. Uber die Temperaturabhangigkeit der Wärmeleitfähigkeit fester Nichtmetalle. Ann. Phys. 1911. 34. 185.
  14. Glassbrener S.J., Slack G.A. Thermal conductivity of dielectric at high temperatures. Phys.Rev. 1964. A. 1058. P. 134.
  15. Slack G.A. Thermal Conductivity of B12AS2 under high Temperatures. Phys.Rev. 1965. 139. A. 507. P. 139−142.
Date of receipt: 07.08.2023
Approved after review: 21.08.2023
Accepted for publication: 02.10.2023