350 rub
Journal Information-measuring and Control Systems №6 for 2023 г.
Article in number:
Markov chains in the task of predicting the values of a time series
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202306-06
UDC: 519.213:51-77
Authors:

S.Ya. Krivolapov1

1 Financial University under the Government of the Russian Federation (Moscow, Russia)

1 skrivolapov@fa.ru

Abstract:

A sample of the log yield values of the shares of a Russian company is considered. The problem of estimating the average time required to achieve a given final value of log profitability, with a known initial value, is solved. To solve the problem: a Markov chain is constructed from the enlarged states of the time series; the probabilities of transition of the Markov chain are estimated from a sample; the average time of achievement is calculated from the matrix of transition probabilities. The practical implementation of the algorithm is carried out by means of the Python programming language.

Pages: 48-54
For citation

Krivolapov S.Ya. Markov chains in the task of predicting the values of a time series. Information-measuring and Control Systems. 2023. V. 21. № 6. P. 48−54. DOI: https://doi.org/10.18127/j20700814-202306-06 (in Russian)

References
  1. Elchenkov R.A., Dunaev M.E., Zaitsev K.S. Time series forecasting in real-time streaming data processing. International Journal of Open Information Technologies. 2022. 1. S. 63−69.
  2. Lobach S.V., Zhuk E.E. Prognozirovanie vremennykh ryadov markovskogo tipa na osnove veivlet-analiza. Materialy Mezhdunar. nauchnoi konf. "Informatsionnye tekhnologii i sistemy 2014" (ITS 2014). Minsk: BGUIR. 2014. S. 282−283. (in Russian)
  3. Lobach S.V., Zhuk E.E. Ob odnom sposobe prognozirovaniya vremennykh ryadov s propuskami. Ekonomika, modelirovanie, prognozirovanie. 2016. 10. S. 218−223. (in Russian)
  4. Makkini Ues. Python i analiz dannykh. M.: DMK Press. 2020. 482 s. (in Russian)
  5. Krivolapov S.Ya., Khripunova M.B. Matematika na Python. M.: KNORUS. 2021. 456 s. (in Russian)
  6. Chzhun Kai-Lai. Odnorodnye tsepi Markova. M.: Mir. 1964. 427 s. (in Russian)
  7. Shiryaev A.N. Veroyatnost−2. M.: MTsNMO. 2011. 968 c. (in Russian)
  8. Koralov L.B., Sinai Ya.G. Teoriya veroyatnostei i sluchainye protsessy. M.: MTsNMO. 2013. 408 s. (in Russian)
  9. Vydrin A.S., Mikhalev A.V. Stokhasticheskie matritsy i analiz zashchishchennosti avtomatizirovannykh sistem. Fundamentalnaya i prikladnaya matematika. 2007. T. 13. № 1. S. 61−99. (in Russian)
  10. Krivolapov S.Ya. Markovskie tsepi i yazyk Python v zadachakh dostizheniya zadannogo sostoyaniya sistemy. Myagkie izmereniya i vychisleniya. 2022. T. 61. № 12. S. 19−31. (in Russian)
Date of receipt: 11.08.2023
Approved after review: 25.08.2023
Accepted for publication: 02.10.2023