A. R. Bestugin1, I. A. Kirshina2, O. I. Sauta3, N. A. Zhilnikova4, A. N. Yakimov5
1-5 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)
1 freshguap@mail.ru, 2 ikirshina@mail.ru, 3 sauta-oleg@yandex.ru, 4 nataliazhilnikova@gmail.com, 5 y_alder@mail.ru
To increase the probability of radar detection of low-altitude low-speed small-sized aircraft (SAC) in proactive radar systems, digital terrain maps (DTM) are used together with data received from the on-board navigation system. The quality of compensation of the interference signal from the underlying surface in the receiver of a radar station (radar) with a proactive mode depends on the accuracy of the representation of the model of the underlying surface in the DTM, as well as on the accuracy of determining the coordinates and orientation angles of the radar antenna. Therefore, it is necessary to determine the permissible errors of the parameters (coordinates and orientation angles) of the radar antenna and the errors of the model of the underlying surface of the DTM, at which it is possible to implement a proactive radar operation mode to compensate interference in the on-board receiver.
The paper uses the mathematical apparatus of the theory of radio wave propagation in the approximation of geometric optics and the basic equations of the theory of radar detection of objects.
The purpose of the article is to determinate the characteristics of the DTM model of the underlying surface (terrain) and the navigation and orientation system of the onboard radar antenna, providing the implementation of algorithms for proactive jamming signal suppression, to increase the accuracy of SAC detection.
The results of the analysis and calculation of the characteristics of the elements of the DTM and the errors of the parameters of the state of the radar antenna, which ensures the realization of the proactive mode of operation of the on-board receiver when detecting the SAC, have been presented.
The presented results can be used in the development of proactive ground-based and airborne radar systems.
Bestugin A.R., Kirshina I.A., Sauta O.I., Zhilnikova N.A., Yakimov A.N. Increasing the probability of detecting small-sized objects in proactive radar systems. Information-measuring and Control Systems. 2023. V. 21. № 4. P. 6−13. DOI: https://doi.org/10.18127/ j20700814-202304-01 (in Russian)
- Bakholdin V.S., Gavrilov V.A., Shaldaev A.V. Algoritmy formirovaniya radiolokatsionnykh izobrazhenij zemnoj poverkhnosti pri ispol'zovanii signalov GLONASS. Izvestiya vuzov. Priborostroenie. 2012. T. 55. № 9. S. 24–29. (in Russian)
- Kovregin V.N., Kovregina G.M. Adaptivno-robastnye metody obnaruzheniya, zakhvata i soprovozhdeniya zavisshikh, malo- i vysokoskorostnykh ob''ektov v integrirovannykh radiolokatsionno-inertsial'nykh sistemakh s kvazinepreryvnym izlucheniem. Sb. materialov XXVIII Sankt-Peterburgskoj Mezhdunar. konf. po integrirovannym navigatsionnym sistemam. Sankt-Peterburg. 2021. S. 76–79. (in Russian)
- Patent № 2697509 RF. Sposob obnaruzheniya, izmereniya dal'nosti i skorosti nizkoletyashchej maloskorostnoj tseli v impul'sno-doplerovskikh radiolokatsionnykh stantsiyakh pri vysokoj chastote povtoreniya impul'sov i invertiruemoj linejnoj chastotnoj modulyatsiej. V.N. Kovregin, G.M. Kovregina. Opubl. 15.08.2019. Byul. № 23. (in Russian)
- Chernodarov A.V., Patrikeev A.P., Kovregin V.N., Kovregina G.M. Ispol'zovanie inertsial'no-sputnikovoj navigatsionnoj sistemy dlya opredeleniya parametrov dvizheniya fazovogo tsentra antenny radiolokatora. Sb. materialov XXIII Sankt-Peterburgskoj Mezhdunar. konf. po integrirovannym navigatsionnym sistemam. Sankt-Peterburg. 2016. S. 266–274. (in Russian)
- Aviatsionnye sistemy radiovideniya. Pod red. G.S. Kondratenkova. M.: Radiotekhnika. 2015. (in Russian)
- Ryzikov M., Novikova Yu. Reduction of scattering cross section of path antennas. Journal of Physics: Conference Series. V. 2094. Krasnoyarsk Science and Technology City Hall of the Russian Union of Scientific and Engineering Associations. Krasnoyarsk, Russia. 2021.
- Novikova Yu.A., Ryzhikov M.B., Svanidze V.G. Errors and distortions of the characteristics of a multichannel phased antenna array with directional asymmetry obtained by synthetic method in aviation weather navigation radar. 2021 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). St. Petersburg, Russia. 2021.
- Spravochnik po radiolokatsii. Pod red. M.I. Skolnika. Per. s angl. pod obshch. red. V.S. Verby. V 2-kh knigakh. Kn. 1. M.: Tekhnosfera. 2015. (in Russian)
- Kalashnikov V.S., Rodos L.Ya. Elektrodinamika i rasprostranenie radiovoln (elektrodinamika). SPb.: Izd-vo SZTU. 2002, 2004. (in Russian)
- Sosnovskij A.A., Khajmovich I.A., Lutin E.A., Maksimov I.B. Aviatsionnaya radionavigatsiya: spravochnik. Pod red. A.A. Sosnovskogo. M.: Transport. 1990. (in Russian)
- Golovanov N.N. Geometricheskoe modelirovanie. M.: Izdatel'stvo fiziko-matematicheskoj literatury. 2002. (in Russian)
- Zherdev D.A., Minaev E.Yu., Fursov V.A. Modelirovanie radiolokatsionnykh izobrazhenij s ispol'zovaniem programmno-modeliruyushchego konstruktora radiolokatsionnykh kart. Sb. materialov Mezhdunar. konf. i molodezhnoj shkoly «Informatsionnye tekhnologii i nanotekhnologii». 2016. S. 586–590. (in Russian)
- Bestugin A.R., Kirshina I.A., Sauta O.I., Amelin K.B. Povyshenie tochnosti i nadezhnosti korrektiruyushchej informatsii nazemnogo funktsional'nogo dopolneniya GNSS. Radiotekhnika. 2022. T. 86. № 5. S. 111–120. DOI: https://doi.org/10.18127/j00338486-202205-14 (in Russian)
- GLONASS. Printsipy postroeniya i funktsionirovaniya. Pod red. A.I. Perova, V.N. Kharisova. Izd. 4-e, pererab. i dop. M.: Radiotekhnika. 2010. (in Russian)
- Luk'yanov D.P., Raspopov V.Ya., Filatov Yu.F. Prikladnaya teoriya giroskopov. SPb.: GNTs RF OAO «Kontsern «TsNII «Elektropribor». 2015. (in Russian)
- Potapov A.A., German V.A. Fraktal'naya radiolokatsiya i fraktal'naya radiofizika: Etapy stanovleniya, rezul'taty, perspektivy. Sb. dokladov X NTK «Radiolokatsiya, navigatsiya, svyaz'». Voronezh: NPF «Sakvoee». 2004. T. III. S. 1869–1896. (in Russian)