350 rub
Journal Information-measuring and Control Systems №3 for 2023 г.
Article in number:
Laser corner cube reflector for Russian lunar landing stations
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202303-12
UDC: 681.783.25
Authors:

O.A. Ivlev1, V.K. Milyukov2, I.A. Grechukhin3, D.A. Pavlov4, V.V. Azarov5, Y.A. Kotlov6, I.O. Ivlev7, V.K. Sysoev8

1,3,5,6,7 JSC "Precision Systems and Instruments" (Moscow, Russia)

2 Sternberg Astronomical Institute of Lomonosov Moscow State University (Moscow, Russia)

4 Saint Petersburg State Univercity (Saint-Petersburg, Russia)

8 Lavochkin Science and Production Association (Moscow, Russia)

Abstract:

Laser retroreflector arrays placed on the Moon have a target error up to ±76 mm, caused by a number of reasons: a large number of reflectors in the array and large array sizes, libration of the Moon and an orientation error to the Earth (from 2° to 10°).

Improving the metrological accuracy of Lunar laser ranging.

The parameters of a single hollow corner reflector with an aperture of 140 mm with a zero target error delivered to the Moon by the Luna-27 spacecraft are substantiated.

The use of the proposed design of a single corner reflector with a zero target error will make it possible to increase the metrological accuracy of the Lunar laser ranging system.

Pages: 90-102
For citation

Ivlev O.A., Milyukov V.K., Grechukhin I.A., Pavlov D.A., Azarov V.V., Kotlov Y.A., Ivlev I.O., Sysoev V.K. Laser corner cube reflector for Russian lunar landing stations. Information-measuring and Control Systems. 2023. V. 21. № 3. P. 90−102. DOI: https://doi.org/10.18127/j20700814 -202303-12 (in Russian)

References
  1. Tom Murphy. APOLLO: One-millimeter LLR IWLR 16. Poznan. 2008.10.14.
  2. Pavlov D. Rezultaty obrabotki nablyudenii lazernoi lokatsii Luny 1970−2017. VAK. Pulkovo. 02.10.2018. (in Russian)
  3. Dzh. Foller, Dzh. Uampler Lunnyi lazernyi otrazhatel. Uspekhi fizicheskikh nauk. 1971. T. 103. № 1. (in Russian)
  4. Kokurin Yu.L. Lazernaya lokatsiya Luny. 40 let issledovanii. Kvantovaya elektronika, 2003, T. 33. № 1. (in Russian)
  5. Williams James G., Turyshev Slava G., Boggs Dale H. The past and present Earth-Moon system: the speed of light stays steady as tides evolve. Planetary Science. 2014.
  6. Murphy T.W., Adelberger E.G., Battat J.B.R., Carey L.N., Hoyle C.D., LeBlanc P., Michelsen E.L., Nordtvedt K., Orin A.E., Strasburg J.D., Stubbs C.W., Swanson H.E., Williams E.. The Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections. Publications of the Astronomical Society of the Pacific 2008. 120. P. 20−37.
  7. Liliane Biskupek, Jürgen Müller, Jean-Marie Torre. Benefit of New High-Precision LLR Data for the Determination of Relativistic Parameters. arXiv:2012.12032v1 [gr-qc] 22 Dec 2020.
  8. J. Chapront, G. Francou. Lunar Laser Ranging: measurements, analysis, and contribution to the reference systems. IERS. 2006. //https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote34/tn34_097.pdf?__blob=publicationFile&v=1.
  9. James G. Williams, Slava G. Turyshev, Dale H. Boggs. Lunar Laser Ranging Tests of the equivalence principle with the Earth and Moon. International Journal of Modern Physics D. 2009. V. 18. P. 1129−1175.
  10. EPM2017 and EPM2017H. http://iaaras.ru/en/dept/ephemeris/epm/2017/.
  11. William M. Folkner, James G. Williams, Dale H. Boggs, Ryan S. Park, Petr Kuchynka. The Planetary and Lunar Ephemerides DE430 and DE431// IPN Progress Report 42-196. 15 February 2014.
  12. Viswanathan V., Fienga A., Minazzoli O., Bernus L., Laskar J., Gastineau M. The new lunar ephemeris INPOP17a and its application to fundamental physics. Monthly Notices of the Royal Astronomical Society. May 2018. V 476. № 2. P. 1877–1888. DOI 10.1093/mnras/sty096
  13. Grechukhin I.A., Grishin E.A., Ivlev O.A., Kornev A.F., Mak A.A., Sadovnikov M.A., Shargorodsky V.D. Russian Lunar Laser Rangefinder with Millimeter Accuracy. Proceedings International Conference «Laser Optics 2016». St. Petersburg. 27 June 2016 – 01 July 2016. № 7549805. s. R63. DOI: 10.1109/LO.2016.7549805.
  14. Vasilyev M.V., Yagudina E.I., Grishin E.A., Ivlev O.A., Grechukhin I.A. On the accuracy of lunar ephemerides using the data provided by the future Russian lunar laser ranging system. Solar System Research. 2016. V. 50. № 5. P. 361−367.
  15. Battat J. New Timing Calibration Capability for the APOLLO LLR experiment. IWLR. 2016. Potsdam.
  16. Dmitry Pavlov. Role of lunar laser ranging in realization of terrestrial, lunar, and ephemeris reference frames. Journal of Geodesy. 2019. 94.
  17. Pavlov D.A. Tselevoi indikator Q8 i tochnost aposteriornykh efemerid GLONASS. IPA RAN. 11.12.2018. (in Russian)
  18. Dmitry A. Pavlov, James G. Williams, Vladimir V. Suvorkin: Determining parameters of Moon’s orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models. Celestial Mechanics and Dynamical Astronomy. 2016. 126(1), 61−88 (2016).
  19. Turyshev V.G., Eksperimentalnye proverki obshchei teorii otnositelnosti:nedavnie uspekhi i budushchie napravleniya issledovanii. UFN: 2009. T. 179. № 1. P. 3−34. DOI: http://dx.doi.org/10.3367/UFNr.0179.200901a.0003. (in Russian)
  20. Dickey J.O., Bender P.L., Faller J.E., Newhall X.X., Ricklefs R.L., Ries J.G., Shelus P.J., Veillet C., Whipple A.L., Wiant J.R., Williams J.G., Yoder C.F. Lunar Laser Ranging: A Continuing of the Apollo Program. «Science». 1994. V. 265. P. 482−490.
  21. Stephen M. Merkowitz, Philip W. Dabney, Je rey C. Livas, Jan F. McGarry, Gregory A. Neumann, and Thomas W. Zagwodzki. Laser Ranging for Gravitational, Lunar, and Planetary Science. International Journal of Modern Physics D. May 29, 2018.
  22. Yun He, Qi Liu, Hui-Zong Duan, Hsien-Chi Yeh, Yu-Qiang Li. A 170 mm hollow corner cube retro-reflector on Chang’e 4 lunar relay satellite// Chin. Phys. B. 2018, 27 (10): 100701 doi: 10.1088/1674- 1056/27/10/100701.
  23. Yun He, Qi Liu, Hui-Zong Duan, Jing-Jing He, Yuan-Ze Jiang, Hsien-Chi Yeh. Manufacture of a hollow corner cube retroreflector for next generation of lunar laser ranging. Research in Astronomy and Astrophysics 2018. V. 18. № 11. 136(8pp) doi: 10.1088/1674−4527/18/11/136.
  24. Yun He, Qi Liu, Hui-Zong Duan, Hsien-Chi Yeh, Yu-Qiang Li. A 170 mm hollow corner cube retro-reflector on Chang’e 4 lunar relay satellite. Huazhong University of Science and Technology, Wuhan, Sun Yat-sen University, Zhuhai, Yunnan Observatory, CAS, Kunming, P.R. China.
  25. Simone Dell’ Agnello, Douglas G. Currie. Next Generation Lunar Laser ranging and Its GNSS Applications. March 2010 IEEE Aerospace Conference Proceedings DOI: 10.1109/AERO.2010.5446911.
  26. Dell’ Agnello S., Delle Monache G., Currie D., Vittori R., Berardi S., Bianco G., Boni A., Cantone C., Garattini M., Intaglietta N., Lops C., Martini M., Maiello M., Patrizi G., Tibuzzi M., Graziosi C. A Lunar Laser Ranging Retroreflector Array for Next Lunar Surface Missions. 2nd Intern. Luna-GLOB Workshop, IKI. Moscow. 1 June 2011.
  27. Slava G. Turyshev, James G. Williams, William M. Folkner, Gary M. Gutt, Richard T. Baran, Randall C. Hein, Ruwan P. Somawardhana, John A. Lipa, Suwen Wang. Corner-cube retro-reflector instrument for advanced lunar laser ranging. Exp Astron (2013) 36:105−135.DOI 10.1007/s10686-012-9324-z.
  28. Araki H., Kashima S., Noda H., Kunimori H., Chiba K., Otsubo T., Utsunomiya M., Matsumoto Y. Development of the Retroreflector on the Moon for the Future Lunar Laser Ranging. https://cddis.nasa.gov/lw18/docs/papers/Session10/13-04-11-Araki.pdf.
  29. Chensheng Wu, Douglas Currie, Dennis, Bradford Behr DESIGN AND OPTIMIZATION OF DIHEDRAL ANGLE OFFSETS FOR THE NEXT GENERATION LUNAR RETRO-REFLECTORS. arXiv:2012.13081v1 [astro-ph.IM]. 24 Dec 2020.
  30. Courde C., Torre J.M., Samain E., Martinot-Lagarde G., Aimar M., Albanese D., Exertier P., Fienga A., Mariey H., Metris G., Viot H., Viswanathan V.. Lunar laser ranging in infrared at the Grasse laser station. Astronomy&Astrophysics 602. A90. 2017 DOI:10.1051/0004-6361/201628590.
  31. Murphy T.W., Adelberger E.G., Battat J.B.R., Hoyle C.D., McMillan R.J., Michelsen E.L., Samad R.L., Stubbs C.W., Swanson H.E. Long-term degradation of optical devices on the moon. 2010.
  32. Kirichenko D.V., Kleimenov V.V., Novikova E.V. Krupnogabaritnye opticheskie kosmicheskie teleskopy. Izvestiya VUZov. Priborostroenie. 2017. T. 60. № 7. DOI: 10.17586/0021-3454-2017-60-7-589-602. (in Russian)
  33. Gordeev S.K., Korchagina S.B., Mezentsev M.A., Karimbaev T.D. Almaz-karbidokremnivye kompozity «Skeleton»: stroenie, svoistva, perspektivy primeneniya. Prezentatsiya OAO «Tsentralnyi nauchno-issledovatelskii institut materialov». Sankt-Peterburg. FGUP «Tsentralnyi institut aviatsionnogo motorostroeniya». M.: 2011. (in Russian)
  34. Rabochie materialy konf. po TianQin: 2015 -Guangzou, 2016 – Wuhan, 2017 – Zuhai. (in Russian)
Date of receipt: 21.03.2023
Approved after review: 04.04.2023
Accepted for publication: 20.04.2023