350 rub
Journal Information-measuring and Control Systems №3 for 2023 г.
Article in number:
Application of automation methods in the adjustment of large-size two-mirror lenses
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202303-11
UDC: 520.2.03
Authors:

O.A. Ivlev1, V.V. Polunadezhdin2, A.D. Sergeeva3, M.I. Yampolskiy4

1-4 JSC "Precision Systems and Instruments" (Moscow, Russia)

Abstract:

Problem statement. Traditional methods of manual adjustment and visual checkout have the following disadvantages: high labor intensity, low measurement accuracy, low time stability and reproducibility.

Purpose of the article. To increase the accuracy and reproducibility of the alignment, as well as the objectivity of measurements by eliminating negative influences of the operator, such as turbulent heat flows introduced into the optical path, manual adjustment errors, subjectivity of visual measurements.

Results. An adjustment technique has been developed to ensure the setting of the relative position of the main and secondary mirrors within the specified strict tolerances. The main principle of adjustment technique is the division of the task into preliminary setting of optical elements on a geometric axis and subsequent calculation of the position of the optical axis, as well as the use of automation tools in all control and measuring equipment.

Practical significance. The application of the obtained results in the creation of large-sized two-mirror lenses will reduce the complexity of the adjustment process and increase accuracy and reproducibility.

Pages: 82-89
For citation

Ivlev O.A., Polunadezhdin V.V., Sergeeva A.D., Yampolskiy M.I. Application of automation methods in the adjustment of large-size two-mirror lenses. Information-measuring and Control Systems. 2023. V. 21. № 3. P. 82−89. DOI: https://doi.org/10.18127/j20700814-202303-11 (in Russian)

References
  1. Raguzin R.M., Zadorin E.Ju. Stabil'nost' nesushhih konstrukcij opticheskih priborov. Opticheskij zhurnal. 2011. T. 78. № 1. S. 32–37. (In Russian).
  2. Mihel'son H.H. Optika astronomicheskih teleskopov i metody ee rascheta. M.: Fizmatlit. 1995. 333s. (In Russian).
  3. Semjonov A.P., Abdulkadyrov M.A., Belousov S.P., Patrikeev A.P., Patrikeev V.E., Sharov Ju.A. Tehnologicheskie oso-bennosti izgotovlenija glavnyh zerkal teleskopov. Opticheskij zhurnal. 2013. T. 80. № 4. S. 8–17. (In Russian).
  4. Kirillovskij V.K. Opticheskie izmerenija. Ch. 3. Funkcional'naja shema pribora opticheskih izmerenij. Tipovye uzly. Opticheskie izmerenija geometricheskih parametrov: Ucheb. posobie. SPb: GU ITMO. 2005. 67s. (In Russian).
  5. Afanas'ev V.A., Zhilkina A.M., Usov V.S. Avtokollimacionnye pribory. M.: Nedra. 1982. 144 s. (In Russian).
  6. Tabachkov A.G., Latyev S.M., Frolov D.N. Unifikacija konstrukcij linzovyh mikroob’ektivov. Opticheskij zhurnal. 2011. T. 78. № 1. S. 38–44. (In Russian).
  7. Pinaev L.V. Sistema iz dvuh prjamougol'nyh zerkal i ee svojstva. Optiko-mehanicheskaja promyshlennost'. 1987. № 12. S. 18-20. (In Russian).
  8. Andosov A.I., Polesskij A.V., Romanova T.N., Judovskaja A.D., Trishenkov M.A. Metodika izmerenija pjatna rassejanija ob’ektiva s ispol'zovaniem matrichnogo fotopriemnogo ustrojstva. Uspehi prikladnoj fiziki. 2019. T. 7. № 5. S. 508-518. (In Russian).
  9. Zverev V.A., Rytova E.S., Timoshhuk I.N. Vlijanie decentrirovki poverhnostej vrashhenija na polozhenie ploskosti izobrazhenija. Opticheskij zhurnal. 2010. T. 77. № 6. S. 8–13. (In Russian).
  10. Patent RU 2690723, 19.12.2017. Sposob i ustrojstvo avtomaticheskoj justirovki zerkal'nyh teleskopov. Grishin E.A., Ivlev O.A., Polunadezhdin V.V., Sergeeva A.D., Fenin R.A. (In Russian).
  11. Svidetel'stvo № 2021619024, 2021. Specializirovannoe programmnoe obespechenie dlja obrabotki izobrazhenij «Shah», versija 13 (Shah) (SOFT). Iroshnikov N.G. (In Russian).
Date of receipt: 20.03.2023
Approved after review: 03.04.2023
Accepted for publication: 20.04.2023