350 rub
Journal Information-measuring and Control Systems №3 for 2023 г.
Article in number:
Automatic alignment system for large-sized telescopes based on a Shack-Hartmann wavefront sensor
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202303-09
UDC: 681.525
Authors:

O.A. Ivlev1, A.D. Sergeeva2, V.V. Polunadezhdin3, M.I. Yampolskiy4, N.G. Iroshnikov5, A.V. Larichev6, A.V. Yusov7, S.A. Kozlov8

1-4 JSC "Precision Systems and Instruments" (Moscow, Russia)

5,6 Lomonosov Moscow State University (Moscow, Russia)

7,8 LLC «Applied Mechanics» (Moscow, Russia)

Abstract:

When designing two mirror telescopes with a main mirror diameter of 1000 mm, requirements were made to keep the diffraction image quality during the observation session, which, with weight and size restrictions (distance between mirrors 1200 mm) led to tighter tolerances for the mutual position of the secondary and primary mirrors and required the search for technical solutions to create a system for built-in automatic control of telescope alignment. The purpose – to keep the stability of the alignment of large-sized astronomical telescopes during the observation session. The system for automatic alignment of the two mirror telescopes (SAA) makes it possible to ensure the stability of the image quality of the telescope during an observation session by controlling the relative position of the secondary mirror relative to the primary mirror of the telescope with tolerances along the optical axis (defocusing) no greater than 2 μm, in the transverse plane (linear transverse displacements) no greater than 4 microns, on slopes no greater than 2 arc. sec. (the center of the coordinate system is located at the top of the secondary mirror of the telescope). The results obtained can be used in the design of built-in systems for controlling the alignment of space- and ground-based mirror axial telescopes.

Pages: 58-67
References
  1. Gogolev Yu.A., Zverev V.A., Pozhinskaya I.I. Sobolev K.Yu. Analiz osnovnykh problem sozdaniya optiki krupnykh teleskopov. Opticheskii zhurnal. 1996. № 4. S. 16−32. (in Russian)
  2. Danilov V.A., Lysenko A.I., Malamed E.R., Sokolskii M.N. Sluzhebnye sistemy kosmicheskikh teleskopov. Opticheskii zhurnal. 2002. № 9. S. 36−44. (in Russian)
  3. Savitskii A.M. Vliyanie teplovogo rezhima na konstruktivnye kharakteristiki kosmicheskogo teleskopa. Opticheskii zhurnal. 2009. № 10. S. 89−93. (in Russian)
  4. Molev F.V. Issledovanie optiko-elektronnoi sistemy opredeleniya vzaimnogo rassoglasovaniya elementov kosmicheskogo teleskopa. Dissertatsiya. 2014. (in Russian)
  5. Kopyakhin I.A. Molev F.V., Issledovanie algoritmov izmereniya koordinat i uglov naklona izobrazheniya dlya ustroistv kontrolya polozheniya elementov opticheskoi sistemy. Sb. trudov X Mezhdunar. konf. "Prikladnaya optika − 2012". T. 1. SPb.: 2012. (in Russian)
  6. Wavefront Sensing and Controls for the James Webb Space Telescope. Proceedings of SPIE - The International Society for Optical Engineering. September. 2012. 8442 DOI:10.1117/12.925015.
  7. Pat. na izobretenie. № RU 2611604 C. Ustroistvo avtomaticheskoi yustirovki dvukhzerkalnoi teleskopicheskoi sistemy s zadannym napravleniem vykhodnogo izlucheniya. Aleksandrov A.B., Meitin V.A., Mokshanov V.N., Moshkov V.L. Nomer zayavki 2015140225. Data registratsii 21.09.2015. Data publikatsii 28.02.2017. (in Russian)
  8. Pat. № RU 2 690 723. Sposob i ustroistvo avtomaticheskoi yustirovki zerkalnykh teleskopov. Grishin E.A., Ivlev O.A., Polunadezhdin V.V., Sergeeva A.D., Fenin R.A. 19.12.2017. (in Russian)
  9. Iroshnikov N.G. Spetsializirovannoe programmnoe obespechenie dlya obrabotki izobrazhenii "Shah", versiya 13. Svidetelstvo № 2021619024. 2021. (in Russian)
Date of receipt: 23.03.2023
Approved after review: 06.04.2023
Accepted for publication: 20.04.2023