350 rub
Journal Information-measuring and Control Systems №6 for 2022 г.
Article in number:
Automated city security systems based on sound data analysis
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202206-06
UDC: 519.6
Authors:

A.S. Vyugina¹, E.I. Kublik², M.S. Chipchagov³, A.I. Labintsev⁴

1,2 Russian Technological University MIREA (Moscow, Russia)

2−4 Financial University under the Government of RF (Moscow, Russia)

Abstract:

This work reflects the results of an automated city security system based on the analysis of sound data development. In this case, the development of an automated system with the implementation of the analysis of sound data through the training of a third-generation neural network using deep learning methods is considered. The main goal of developing an automated system was to automate the work of police patrols to identify disturbing events on the streets of the city and prompt intervention to stop them. As a result of the research, design and implementation of the automated system, a minimum viable product was created.

Pages: 50-57
For citation

Vyugina A.S., Kublik E.I., Chipchagov M.S., Labintsev A.I. Automated city security systems based on sound data analysis. Information-measuring and Control Systems. 2022. V. 20. № 6. P. 50−57. DOI: https://doi.org/10.18127/j20700814-202206-06 (in Russian)

References
  1. Cherkasov D.Yu., Ivanov V.V. Mashinnoe obuchenie. Kompyuternye i informatsionnye nauki. 2018. (in Russian)
  2. Koroteev M.V. Obzor nekotorykh sovremennykh tendentsii v tekhnologii mashinnogo obucheniya. Kompyuternye i informatsionnye nauki. 2018. (in Russian)
  3. Gusev A.V. Perspektivy neironnykh setei i glubokogo mashinnogo obucheniya v sozdanii reshenii dlya zdravookhraneniya. Iskusstvennyi intellekt v zdravookhranenii. 2017. [https://www.idmz.ru/media/vit_ru/2017/3/vit‑3_nizkoe-razr-pages-94-107pdf.pdf]. (in Russian)
  4. Gusev A.V., Pliss M.A. Osnovnye rekomendatsii k sozdaniyu i razvitiyu sistem na baze iskusstvennogo intellekta. Iskusstvennyi intellekt v zdravookhranenii. 2018. [https://www.idmz.ru/media/vit_ru/2018/3/vit-3-2018-hi-res-stranitsy-47-62pdf.pdf]. (in Russian)
  5. Nigmatullin R., Dorokhin S., Ivchenko A. Generalized Hurst Hypothesis: Description of Time-Series in Communication Systems. Mathematics. 2021. [https://www.mdpi.com/2227-7390/9/4/381/pdf?version=1614081464].
  6. Katori Y., Okubo K. Neural network based geomagnetic estimation for multi-site observation system. IEICE Communications Express. 2018. [https://www.jstage.jst.go.jp/article/comex/7/10/7_2018XBL0017/_pdf/-char/en].
  7. Shafin R., Liu L., Ashdown J., Matyjas J., Medley M., Wysocki B., Yi Y. Realizing Green Symbol Detection via Reservoir Computing: An Energy-Efficiency Perspective. IEICE Communications Express. 2018.
  8. Kulikov V., Lempitsky V. Instance Segmentation of Biological Images Using Harmonic Embeddings. Computer vision and pattern recognition. 2019. [https://arxiv.org/pdf/1904.05257].
  9. Sholle F. Glubokoe obuchenie na Python. M.: Piter. 2019. 400 s. (in Russian)
  10. Tirni B., Kellekher D. Nauka o dannykh. M.: Alpina non-fikshn. 2020. 220 s. (in Russian)
  11. Rashka S., Mirdzhalili V. Python i mashinnoe obuchenie. M.: Vilyams. 2020. 848 s. (in Russian)
  12. Nilsen M. Neural Networks and Deep Learning. Elektronnyi resurs: [http://neuralnetworksanddeeplearning.com/]. Data obrashcheniya: 20.10.2021.
  13. Kublik E.I., Vyugina A.S. Analiz sistem obespecheniya bezopasnosti na osnove tekhnologii akusticheskogo nablyudeniya. Tezisy dokladov XX Vseros. nauchnoi konf. «Neirokompyutery i ikh primenenie». M.: MGPPU. 2022. 41 s. (in Russian)
  14. Antonenko M. Analiz algoritmov audioanalitiki. Elektronnyi resurs: [https://habr.com/ru/company/synesis/blog/250935/]. Data obrashcheniya: 15.03.2022. (in Russian)
  15. Analiz audio. Identifikatsiya golosa. Elektronnyi resurs: [https://habr.com/ru/post/572496/]. Data obrashcheniya: 17.03.2022. (in Russian)
  16. Audioanaliz i algoritmy obrabotki izobrazhenii. Elektronnyi resurs: [https://habr.com/ru/company/audiomania/blog /380027/]. Data obrashcheniya: 17.03.2022. (in Russian)
  17. Informatsionnaya tekhnologiya. Kompleks standartov na avtomatizirovannye sistemy. Avtomatizirovannye sistemy. Stadii sozdaniya. Information technology. Set of standards for automated systems. Stages of development: GOST 34.601-90. Izdanie ofitsialnoe. M.: Standartinform. 2002. (in Russian)
  18. Kompleks standartov na avtomatizirovannye sistemy. Tekhnicheskoe zadanie na sozdanie avtomatizirovannoi sistemy. Information technology. Set of standards for automated systems. Technical directions for automated system making: GOST 34.602-89. Izdanie ofitsialnoe. M.: Standartinform. 2009. (in Russian)
  19. Dokumentatsiya po yazyku programmirovaniya Python. Elektronnyi resurs: [https://pydocs.ru/]. Data obrashcheniya: 25.04.2022. (in Russian)
  20. PyMongo 4.1.1 Documentation. Elektronnyi resurs: [https://pymongo.readthedocs.io/en/stable/index.html]. Data obrashcheniya: 30.04.2022. (in Russian)
  21. Chizhova , E.I. Kublik I.A., Chipchagov M.S., Labintsev A.I. Povyshenie effektivnosti filtratsii spama na osnove metodov mashinnogo obucheniya v soobshcheniyakh razlichnoi prirody. Neirokompyutery: razrabotka, primenenie. 2022. № 5. S. 5−18
Date of receipt: 17.10.2022
Approved after review: 07.11.2022
Accepted for publication: 30.11.2022