S.G. Vorona¹, T.V. Kalinin², I.N. Shulga³
1−3 Mozhaysky Military Space Academy (Saint Petersburg, Russia)
The rapid development of computer technology and the creation of new programming languages require their performance testing, as well as the search for errors when writing programs, that is, diagnostics.
This article discusses the method of constructing optimal diagnostic algorithms for various models, which consists in forming a sequence of checks that minimize the average time to search for errors. The essence of diagnostic algorithms for determining the readiness of a complex of modeling programs is as follows. A diagnostic model is being developed for a complex of modeling programs.: The presence of a diagnostic model allows you to determine the sequence of checks that reduce the time of checks and the search for non-functional components. The method of constructing rational conditional algorithms for defect search is considered. It is advisable to consider simpler methods for constructing algorithms for technical diagnostics of complexes of models close to optimal, the construction of rational conditional algorithms for defect search (ADF), and also the algorithm for constructing rational
Vorona S.G., Kalinin T.V., Shulga I.N. Optimization of diagnostics of complexes of interrelated models. Information-measuring and Control Systems. 2022. V. 20. № 6. P. 5−11. DOI: https://doi.org/10.18127/j20700814-202206-01 (in Russian)
- Avremchuk E.F., Vavilov A.A. i dr. Tekhnologiya sistemnogo modelirovaniya. M.: Mashinostroenie. 1988. 520 s. (in Russian)
- Alpatov Yu.N. Modelirovanie protsessov i sistem upravleniya: Ucheb. posobie. SPb.: LAN. 2018. 140 s. (in Russian)
- Glushkov V.M. Obobshchennye dinamicheskie sistemy i protsessionnoe prognozirovanie. Problemy prikladnoi matematiki i mekhaniki. M.: Nauka. 1971. S. 27−30. (in Russian)
- Buslenko N.P. Slozhnye sistemy i imitatsionnye modeli. Kibernetika. 1976. № 6. S. 50−59. (in Russian)
- Buslenko N.P. Modelirovanie slozhnykh sistem. M.: Nauka. 1978. 399 s. (in Russian)
- Belov Yu.A., Didenko V.P., Kozlov N.N. i dr. Matematicheskoe obespechenie slozhnogo eksperimenta. Obrabotka izmerenii pri issledovanii slozhnykh sistem. Kiev: Naukova dumka. 1982. 304 s. (in Russian)
- Konovalov A.N., Yanenko N.N. Modulnyi printsip postroeniya programm kak osnova sozdaniya paketa prikladnykh programm resheniya zadach mekhaniki sploshnoi sredy. Kompleksy programm matematicheskoi fiziki. Novosibirsk: VTs SO AN SSSR. 1972. S. 56−63. (in Russian)
- Totsenko V.G., Aleksandrov A.V., Paramonov N.B. Korrektnost, ustoichivost, tochnost programmnogo obespecheniya. Kiev: Naukova Dumka. 1990. (in Russian)
- Vorona S.G., Kalinintsenk T.V. Sintez modeliruyushchikh programm na osnove mnogoversionnykh bibliotek komponent. Naukoemkie tekhnologii, 2022, №7, S. 43−49. (in Russian)
- Informatsionnye tekhnologii i vychislitelnye sistemy. Obrabotka informatsii i analiz dannykh. Programmnaya inzheneriya. Matematicheskoe modelirovanie. Prikladnye aspekty informatiki. Pod red. S.V. Emelyanova i M. Lenand. 2016. 104 s. (in Russian)
- Vorona S.G., Khrestinin D.V., Kalinin T.V., Bulychev S.N. Metody otsenki kharakteristik programm i algoritmov. Nelineinyi mir. 2020. T. 18. № 2. S. 53−61. (in Russian)
- AS № 1756900. Ustroistvo dlya modelirovaniya protsessa funktsionirovaniya vosstanavlivaemogo ob’ekta. Paramonov N.B., Arkhipenko A.A., Zelenchuk Yu.M., Lisichenok A.N. G 06 F15/20. 1992. BI № 30. (in Russian)
- Patent RV № 2011220. Ustroistvo dlya opredeleniya prodolzhitelnosti vychislitelnogo eksperimenta provodimogo na EVM. Paramonov N.B., Arkhipenko A.A., Zelenchuk Yu.M., Lisichenok A.N., Matveev K.B. G 06 F 15/20. 1994. BI № 7. (in Russian)
- Patent RV № 2015548 Ustroistvo dlya modelirovaniya protsessa vypolneniya programmy na nenadezhnoi EVM. Paramonov N.B., Arkhipenko A.A., Zelenchuk Yu.M., Lisichenok A.N., Matveev K.B., Fedorov V.I. G 06 F 15/20. BI № 12, 30.06.94. 1991, 1989. (in Russian)