350 rub
Journal Information-measuring and Control Systems №4 for 2022 г.
Article in number:
Mathematical model of the thermal imaging seeker of an air-to-air guided missile
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202204-07
UDC: 621.396.6
Authors:

S.M. Lazarenkov1, E.D. Shatsky2

1,2 MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh, Russia)

Abstract:

Using methods of digital image processing, variational calculus, automatic control theory and probability theory, a mathematical model of the thermovision imaging seeker (TIS) of an air-to-air guided missile has been developed, designed to assess the effectiveness of the use of optoelectronic pressure equipment and complexes in protecting aircraft from high-precision weapons. A general description and block diagram of the mathematical model, a brief description of its main blocks and the order of their interaction are given.

An illustrative example of the transformation of the input images of the phono-target (interference) situation in the TIS with background compensation, determination of the target position in the image, image segmentation in the interests of recording the standard, the results of the evaluation of the range and dynamic characteristics of the TIS, as well as an analysis of the calculated characteristics of the TIS obtained during the simulation.

Based on the analysis of the results obtained and their comparison with the achieved characteristics of the TIS of this class, the conclusion is made about the adequacy of the developed mathematical model and the expediency of its use in solving the problems of evaluating the effectiveness of modern and promising aviation means and complexes of optoelectronic suppression.

The article contains 7 figures, 1 table and links to 17 sources of information.

Pages: 60-70
For citation

Lazarenkov S.M., Shatsky E.D. Mathematical model of the thermal imaging seeker of an air-to-air guided missile. Information-measuring and Control Systems. 2022. V. 20. № 4. P. 60−70. DOI: https://doi.org/10.18127/j20700814-202204-07 (in Russian)

References
  1. Panov V.V., Fateev V.P., Surda V.P., Kudrasov V.K., Popov B.I. Vysokotochnoe oruzhie zarubezhnykh stran. T. 4. Zenitnye raketnye kompleksy nazemnogo bazirovaniya maloi, srednei i bolshoi dalnosti. Tula: OOO «Best Prodakshn». 2015. 516 s. (in Russian)
  2. Yukhno P.M. Prednamerennye opticheskie pomekhi vysokotochnomu oruzhiyu. M.: «Radiotekhnika». 2017. 640 s. (in Russian)
  3. Lyutin V.I., Ananev A.V., Goncharenko V.I. Postroenie sistemy avtomaticheskogo navedeniya bespilotnykh letatelnykh apparatov s primeneniem kompleksirovaniya rezultatov nablyudeniya tseli razlichnymi datchikami. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo. 2019. № 666. (in Russian)
  4. Barskii A.G. Optiko-elektronnye sledyashchie sistemy. M.: Universitetskaya kniga; Logos. 2009. 200 s. (in Russian)
  5. Svidetelstvo № 2021666607 ot 18 oktyabrya 2021 g. o registratsii programmy dlya EVM «Model opticheskoi golovki samonavedeniya, osnashchennoi matrichnym fotopriemnym ustroistvom». Avtory i pravoobladateli: Shatskii E.D., Lazarenkov S.M., Likhous D.D. (in Russian)
  6. Kozlov S.V., Karpukhin V.I., Lazarenkov S.M. Modeli konflikta aviatsionnykh sistem radioelektronnoi borby i protivovozdushnoi oborony. Voronezh: VUNTs VVS «VVA». 2013. 467 s. (in Russian)
  7. Ponkin V.A. i d.r. Opticheskaya zametnost letatelnykh apparatov. g. Voronezh: IPTs «Nauchnaya kniga». 2015. 533 s. (in Russian)
  8. Ponkin V.A., Yukhno P.M. Energeticheskaya model protsessa formirovaniya izobrazheniya opticheskoi sistemoi. Radiotekhnika i elektronika. T. 28. № 6. 1983. (in Russian)
  9. Gudmen Dzh. Vvedenie v Fure-optiku: Per. s angl.. Pod red. G.I. Kosourova. M.: Mir. 1970. 364 s. (in Russian)
  10. Tikhonov V.I. Statisticheskaya radiotekhnika. M.: Radio i svyaz. 1982. 624 s. (in Russian)
  11. Yakushenkov Yu.G. Teoriya i raschet optiko-elektronnykh priborov. M.: Logos. 1999. 480 s. (in Russian)
  12. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii: Per. s angl. L.I. Rubanova, P.A. Chochia. M.: Tekhnosfera. 2012. 1104 s. (in Russian)
  13. Baklitskii V.K., Bochkarev A.M., Musyakov M.P. Metody filtratsii signalov v korrelyatsionno-ekstremalnykh sistemakh navigatsii. M.: Radio i svyaz. 1986. 216 s. (in Russian)
  14. Zaikin V.V. Samonavedenie. M.: SAINS-PRESS. 2002. 80 s. (in Russian)
  15. Baloev V.A., Ilin G.I., Ovsyanninkov V.A., Filippov V.L. Effektivnost, pomekhozashchishchennost i pomekhoustoichivost vidovykh optiko-elektronnykh sistem. g. Kazan: Izd-vo Kazanskogo gosudarstvennogo tekhnicheskogo un-ta. 2015. 424 s. (in Russian)
  16. Antsev G.V., Zhigulin G.P., Makarenko A.A., Sarychev V.A. Optikoelektronnye sistemy samonavedeniya vysokotochnogo oruzhiya. Vvedenie v teoriyu. M.: Radiotekhnika. 2017. 720 s. (in Russian)
  17. Schlejpen H.M.A., Carpenter S.R., Mellier B., Dimmeler A. Imaging seeker surrogate for IRCM evaluation. Proceedings of SPIE-The International Society for Optical Engineering. 2006. (in Russian)
Date of receipt: 28.02.2022
Approved after review: 21.03.2022
Accepted for publication: 15.07.2022