E.V. Egorova1, M.H. Aksayitov2, A.N. Ribakov3, M.V. Seliverstov4
1 RTU MIREA (Moscow, Russia)
2 JSC «Concern «Granit-Electron» (Saint Petersburg, Russia)
3,4 All-Russia Research Institute of Automatics (Moscow, Russia)
At present, the theory and algorithms of information processing have been developed that provide solving the problems of information-measuring systems in conditions of full resolution of signals and trajectories of movement of objects at all stages of information processing, i.e. in simple conditions of functioning of means of information-measuring systems. The main limitation that makes it difficult to use the developed algorithms is that the situation in relation to which the decision is made is considered as a random process, and the implementation of the algorithms requires knowledge of the a priori probability distribution density of the number of objects. The developed optimal algorithms at high intensity of false signal flows and under conditions of dense flows of objects require large computing resources that modern and advanced computers may not have. In the analyzed literature, the proposed suboptimal simplified algorithms are ineffective under the considered operating conditions. For cases of selection of primary signals and trajectories of movement of objects, i.e. for difficult conditions of functioning of information-measuring systems, there are only private theoretical studies on solving problems of information-measuring systems. The solution of the problems of assessing and classifying the situation is based on the selection of true objects, the assessment of the parameters of their movement and the classification of the type. This article defines in detail the concept of an information-measuring system as a set of technical means, including: means of observing and measuring the parameters of dynamic objects - information sources; points for collecting and processing information on objects, generating data for managing information sources; means of transferring information between its sources and points of collection, processing and management; means of transmitting information between the points of its collection, processing and management and higher points, in the interests of which information-measuring systems function. The goals of the functioning of the information-measuring system are determined, which consist in the timely and reliable generation of information about the actual state of the controlled situation, as well as the main tasks of the information-measuring system are identified: detection of objects, selection (estimation of parameters) of the trajectories of their movement, establishing the types of objects, their number at the current and forecasted points in time, classifying the situation. In addition, modules of block diagrams of secondary and tertiary information processing were analyzed with a detailed description of each module. The proposed algorithmic variants of information processing make it possible to finally identify the true trajectories with simultaneous refinement of their parameters and correlation matrices of errors in the estimates of the parameters of the analyzed objects.
Egorova E.V., Aksayitov M.H., Ribakov A.N., Seliverstov M.V. Algorithms for optimal digital information processing in information-measuring systems. Information-measuring and Control Systems. 2022. V. 20. № 4. P. 44−53. DOI: https://doi.org/10.18127/j20700814-202204-05 (in Russian)
- Kuzmin S. Osnovy teorii tsifrovoi obrabotki radiolokatsionnoi informatsii. M.: Sov. radio. 1974. S. 432. (in Russian)
- Rybakov A.N., Egorova E.V., Vetrova V.V. Obuchenie, samoobuchenie v zadachakh tekhnicheskogo zreniya i raspoznavaniya. Naukoemkie tekhnologii. 2015. T. 16. № 10. S. 14−18. (in Russian)
- Savrasov Yu.S. Metod opredeleniya orbit kosmicheskikh ob'ektov. M.: Mashinostroenie. 1981. 174 s. (in Russian)
- Bard I. Nelineinoe otsenivanie parametrov. M.: Statistika. 1979. 349 s. (in Russian)
- Katkovnik V.Ya. Lineinye otsenki i stokhasticheskie zadachi optimizatsii. M.: Nauka. 1976. 488 s. (in Russian)
- Seidzh E., Mele Dzh. Teoriya otsenivaniya i ee primenenie v svyazi upravlenii. M.: Svyaz. 1976. 496 s. (in Russian)
- Vilenkin S.V. Statisticheskaya obrabotka rezultatov issledovaniya sluchainykh funktsii. M.: Energiya. 1979. 320 s. (in Russian)
- Sosulin Yu.T. Teoriya obnaruzheniya i otsenivaniya stokhasticheskikh signalov. M.: Sov. radio. 1978. 320 s. (in Russian)
- Egorova E.V., Aksyaitov M.Kh., Rybakov A.N. Algoritmy avtomaticheskogo obnaruzheniya i raspoznavaniya malokontrastnykh nazemnykh tselei s ispolzovaniem shumopodobnykh shirokopolosnykh signalov. Elektromagnitnye volny i elektronnye sistemy. 2021. T. 26. № 1. S. 21−30. DOI: https://doi/org/10/18127/j15604128-20-2101-01. (in Russian)
- Repin V.G., Tartakovskii G.N. Statisticheskii sintez pri apriornoi neopredelennosti i adaptatsii informatsionnykh sistem. M.: Sov. radio. 1977. 432 s. (in Russian)
- Levin B.R. Teoreticheskie osnovy statisticheskoi radiotekhniki. M.: Sov. radio. 1976. T. 3. 288 s. (in Russian)
- Levin B.R. Teoreticheskie osnovy radiotekhniki. M.: Sov. radio. 1975. T. 2. 392 s. (in Russian)
- Milenkii A.V. Klassifikatsiya signalov v usloviyakh neopredelennosti. M.: Sov. radio. 1975. 274 s. (in Russian)
- Bolshakov I.A. Statisticheskie problemy vydeleniya potoka signalov iz shuma. M.: Sov. radio. 1969. 464 s. (in Russian)
- Bakut P.A., Zhulina Yu.V., Ivanchuk N. Obnaruzhenie dvizhushchikhsya ob'ektov. M.: Sov. radio. 1980. 288 s. (in Russian)
- Egorova E.V., Aksyaitov M.Kh., Rybakov A.N. Ierarkhicheskie urovni obrabotki informatsii v sistemakh obnaruzheniya i soprovozhdeniya ob'ektov. Naukoemkie tekhnologii. 2019. № 7. S. 51−59. (in Russian)
- Tsvetkov A.G. Printsipy kolichestvennoi otsenki effektivnosti radioelektronnykh sredstv. M.: Sov. radio. 1971. 201 s. (in Russian)