A.A. Filonov1, P.E. Korneev2
1 Military Academy of Aerospace Defense named after Marshal of the Soviet Union G.K. Zhukov (Tver, Russia)
2 YTI (branch) of MSUT «STANKIN» (Yegoryevsk, Russia)
Currently, there is a wide variety of digital communication systems that operate in a complex interference environment. Increasing noise immunity by increasing the energy of transmitted signals is not rational, especially taking into account the loading of radio bands. The most appropriate methods are based on the use of special types of signals and the use of effective algorithms for their processing. Today, more and more attention is being paid to polarization-manipulated signals and their processing methods, which, without loss of bandwidth, make it possible to obtain a significant gain in the noise immunity of communication systems. At the same time, polarization methods are successfully combined with all other processing methods. The purpose of this work is to analytically describe the method of 64-position quadrature amplitude-polarization manipulation (64-QAPM) when transmitting 6-bit binary modulation symbols over a communication channel. In the course of mathematical modeling, a signal constellation was formed and visualized. A block diagram of the modulator is given. The practical significance of this work lies in the fact that quadrature amplitude-polarization manipulation can be considered as a universal type of digital modulation, which can be used instead of the currently known quadrature types of manipulation. In addition, the use of not only a right-sided elliptically polarized wave, but also a left-sided elliptically polarized wave in the transmission of digital information will increase the data transfer rate by increasing the bit depth of the modulation symbol, without increasing the bandwidth of the system. In this case, the 64-QAPM method is transformed into the 128-QAPM method.
- Egorov E.I., Kalashnikov N.I., Mikhailov A.C. Ispolzovanie radiochastotnogo spektra i radiopomekhi. M.: Radio i svyaz. 1986. 304 s. (in Russian)
- Zhavoronkov S.S., Yamanov D.N. Mnogopozitsionnye signaly s polyarizatsionnoi manipulyatsiei. Nauchnyi Vestnik MGTU GA. seriya Radiotekhnika i radiofizika. M.: MGTU GA. 2007. № 99. S. 52−56. (in Russian)
- Gusev K.G., Filatov A.D., Sopolev A.P. Polyarizatsionnaya modulyatsiya. M.: Sov. radio. 1974. 288 s. (in Russian)
- Popovskii V.V. Osobennosti ispolzovaniya polyarizatsii i polyarizatsionno-vremennykh metodov obrabotki signalov v sistemakh svyazi. Sredstva svyazi. 1982. № 1. (in Russian)
- Rodimov A.P., Popovskii V.V., Dmitriev V.I., Nikitchenko V.V. Polyarizatsionnye metody obrabotki radiosignalov. Zarubezhnaya radioelektronika. 1981. № 4. S. 38−48. (in Russian)
- Gusev K.G. Polyarizatsionnaya modulyatsiya. Kharkov: KhVKIU. 1968. 328 s. (in Russian)
- Chu T.S. Analysis and prediction of cross-polarization on earth-space links. Annual telecommunication. 1981. V. 36. № 1−2. P. 140−147.
- Kozlov A.I., Logvin A.I., Sarychev V.A. Polyarizatsiya radiovoln. Polyarizatsionnaya struktura radiolokatsionnykh signalov. M.: Radiotekhnika. 2005. 704 s. (in Russian)
- Korostelev A.A. Prostranstvenno-vremennaya teoriya radiosistem. M.: Radio i svyaz. 1987. 320 s. (in Russian)
- Golikov A.M. Modulyatsiya, kodirovanie i modelirovanie v telekommunikatsionnykh sistemakh. Teoriya i praktika: Ucheb. posobie. SPb.: Izdatelstvo «Lan». 2018. 452 s. (in Russian)
- Kurdyumov O.A., Sagach V.E. Antenny ellipticheskoi polyarizatsii v sputnikovoi navigatsii i telemetrii. M.: Radiotekhnika. 2018. 160 s. (in Russian)
- Sklyar B. Tsifrovaya svyaz. Teoreticheskie osnovy i prakticheskoe primenenie. M.: Izdatelskii Dom Vilyams. 2003. 1104 s. (in Russian)