350 rub
Journal Information-measuring and Control Systems №5 for 2021 г.
Article in number:
Simulation of functioning of radar systems in acoustic echo-free chamber
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202105-01
UDC: 621.396.962
Authors:

S.A. Klimov 1, S.S. Rachkovskiy 2, A.V. Ashichmin 3, M.A. Sviridov 4, А.N. Коvalencov 5

1–5  Air Defense Military Academy of the Armed Forces of the Russian Federation named after Marshal of the Soviet Union A.M. Vasilevsky (Smolensk, Russia)

Abstract:

Problem setting. In radar, the acoustic mode of large-scale physical modeling has long been known and well established, which can be considered as a logical continuation of the method of mathematical modeling, and on the other hand, as a preliminary stage in relation to the modes of full-scale or semi-full-scale experimental research.

Target. Substantiation of principles and methods of creating an acoustic echo-free camera for large-scale physical simulation of radar systems.

Results. Method of large-scale physical simulation of radar functioning in air environment in acoustic echo-free chamber specially created for solution of this problem is proposed.

Practical significance. Ultrasonic modelling has great efficiency in the development of new radars and has a number of advantages compared to other research methods: relatively low cost and labor intensity of creating, operating equipment and conducting examinations; greater reliability and accuracy of the results obtained, comparable to in-kind experiments; high flexibility of equipment restructuring when modeling radar of different types and range zones; possibility of using results of ultrasonic modeling (digitized echoes) for carrying out semi-static and mathematical modeling.

Pages: 5-24
For citation

Klimov S.A., Rachkovskiy S.S., Ashichmin A.V., Sviridov M.A., Коvalencov А.N. Simulation of functioning of radar systems in acoustic echo-free chamber. Information-measuring and Control Systems. 2021. V. 19. № 5. P. 5−24. DOI: https://doi.org/10.18127/j20700814-202105-01 (in Russian)

References
  1. Radiolokatsionnoe raspoznavanie i metody matematicheskogo modelirovaniya. Nauchno-tekhnich. seriya. «Radiolokatsiya i radiometriya», № 2, Vyp. 3. Pod red. Ya.D. Shirmana. Radiotekhnika. 2000. 97 s. (in Russian)
  2. Shtager E.A. Rasseyanie radiovoln na telakh slozhnoi formy. M.: Radio i svyaz. 1986. 184 s. (in Russian)
  3. Radioelektronnye sistemy: osnovy postroeniya i teoriya. Spravochnik. Izd. 2-e, pererab. i dop.. Pod red. Ya.D. Shirmana. Radiotekhnika. 2017. 520 s. (in Russian)
  4. Semin A.I., Trofimov V.N. Masshtabnoe fizicheskoe gidroakusticheskoe modelirovanie radiolokatsionnykh sistem polucheniya i obrabotki radiolokatsionnykh izobrazhenii vysokogo razresheniya. Izvestiya RAN. Teoriya i sistemy upravleniya. 2005. № 4. S. 143−157. (in Russian)
  5. Trofimov V.N. Masshtabnoe fizicheskoe gidroakusticheskoe modelirovanie RLS s sintezirovannoi aperturoi maloi dalnosti dlya BPLA. Zhurnal radioelektroniki (elektronnyi zhurnal). 2019. № 9. URL= http://jre.cplire.ru/jre/sep19/7/text.pdf. DOI 10.30898/16841719.2019.9.7. (in Russian)
  6. Kozlov A.V., Kosynkin A.I., Moroz A.V., Pimenov V.F., Sakhno I.V. Modelirovanie mnogopozitsionnoi radiolokatsionnoi sistemy s sintezirovannoi aperturoi antenny s ispolzovaniem ultrazvukovogo diapazona dlin voln. Trudy XXVIII Vseros. simpoziuma «Radiolokatsionnoe issledovanie prirodnykh sred». SPb.: VKA imeni A.F. Mozhaiskogo. 2013. № 10. T. 1. S. 419−429. (in Russian)
  7. Moroz A.V., Pimenov V.F., Sokolov S.M. Lokatsionnyi akusticheskii kompleks polunaturnogo modelirovaniya radiolokatsionnykh sistem s sintezirovannoi aperturoi antenny. Materialy yubileinoi 70-i Vseros. nauchno-tekhnich. konf. SPb.: SPbNTORES imeni A.S. Popova. 2015. T. 1. S. 78−79. (in Russian)
  8. Shkapskii G.I., Kurnina D.V., Smolin V.P. Masshtabnoe fizicheskoe ultrazvukovoe modelirovanie, ego programmnaya i apparatnaya storona. Sb. statei VII Mezhdunar. nauchno-prakticheskaya konf. «Tekhnicheskie nauki – ot teorii k praktike». Novosibirsk: SibAK. 2012. Chast I. S. 86−98. (in Russian)
  9. Sukhanov D.Ya., Latipova L.M. Ultrazvukovoe videnie v vozdukhe na osnove vzaimno ortogonalnykh lineinykh reshetok iz izluchatelei i priemnikov. Izvestiya VUZov. Fizika. 2012. T. 55. № 9/2. S. 12−16. (in Russian)
  10. Sukhanov D.Ya., Latipova L.M. Ultrazvukovidenie v vozdukhe s primeneniem krestovidnoi matritsy ultrazvukovykh izluchatelei i priemnikov. Izvestiya vuzov. Fizika. 2013. T. 56. № 8/2. S. 145−148. (in Russian)
  11. Moore R.K. Acoustic simulation of radar returns. Microwaves. 1962. V. 1. № 7. P. 20−35.
  12. Staveley J.R. Automated ultrasonic radar simulator. The Radio Electron. Eng. 1971. V. 41. № 8. P. 351−356.
  13. Vincent B., Mouton E., Chaumette C., Nouals O., Besson O. Synthetic Aperture Radar Demonstration Kit For Signal Processing Education. IEEE International Conference. 2007. V. 3. P. 709−712.
  14. Solak G. Application of SAR techniques in an ultrasound testbed. In partial fulfillment of the requirements for the degree of Master of Science in Electrical and Electronics Engineering. 2008. 101 p.
  15. Clemente C., Balleri A., Woodbridge K., Soraghan J.J. Developments in target micro-Doppler signatures analysis: radar imaging, ultrasound and through-the-wall radar. EURASIP Journal on Advances in Signal Processing. 2013. Rezhim dostupa: http://asp.eurasipjournals.com/content/2013/1/47. DOI: 10.1186/1687-6180-2013-47.
  16. Dura-Bernal S., Garreau G., Andreou C., Andreou A., Georgiou J., Wennekers T., Denham S. Human action categorization using ultrasound micro-doppler signatures. In Proceedings of the Second international conference on Human Behavior Unterstanding HBU’11. Springer-Verlag Berlin, Heidelberg. 2011. P. 18−28.
  17. Spravochnik konstruktora REA: Obshchie printsipy konstruirovaniya. Pod red. R.G. Varlamova. M.: Sov. radio. 1980. 480 s. (in Russian)
  18. Venikov V.A. Teoriya podobiya i modelirovaniya primenitelno k zadacham elektroenergetiki. M.: Vysshaya shkola. 1966. 278 s. (in Russian)
  19. Brekhovskikh L.M. Difraktsiya zvukovykh voln na nerovnoi poverkhnosti. DAN SSSR. 1951. T. 79. № 4. S. 585−588. (in Russian)
  20. Isakovich M.A. Rasseyanie voln ot statisticheski-sherokhovatoi poverkhnosti. ZhETF. 1952. T. 23. № 3 (9). S. 305−314. (in Russian)
  21. Bass F.G., Fuks I.M. Rasseyanie voln na statisticheski sherokhovatoi poverkhnosti. M.: Nauka. 1972. 424 s. (in Russian)
  22. Maizels E.N., Torgovanov V.A. Izmerenie kharakteristik rasseyaniya radiolokatsionnykh tselei. Pod red. M.A. Kolosova. M.: Sov. radio. 1972. 232 s. (in Russian)
  23. Babichev A.P., Babushkina N.A., Bratkovskii A.M. i dr. Fizicheskie velichiny: Spravochnik. Pod red. I.S. Grigoreva, E.Z. Meilikhova. M.: Energoatomizdat. 1991. 1232 s. (in Russian)
  24. Shtager E.A. Rasseyanie radiovoln na telakh slozhnoi formy. M.: Radio i svyaz. 986. 184 s. (in Russian) 25. Ultrazvuk. Malenkaya entsiklopediya. Pod red. I.P. Golyamina. M.: Sov. radio. 1979. 400 s. (in Russian) 26. www.murata.com.
  25. Jackson P. Jane's All The World's Aircraft 2004–2005. Jane's Information Group. 2004. P. 706−712. 860 p.
  26. Moore R.K. Acoustic simulation of radar returns. Microwaves. 1962. V. 1. № 7.
Date of receipt: 18.08.2021
Approved after review: 08.09.2021
Accepted for publication: 27.09.2021