Journal Information-measuring and Control Systems №2 for 2021 г.
Article in number:
Structural-parametric synthesis of the tracking filter based on decomposition by the target functional with adaptation to trajectory disturbances
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202102-02
UDC: 62-50+06
Authors:

A.A. Kostoglotov¹, A.S. Penkov², S.V. Lazarenko³

1,2 Rostov State Transport University (Rostov-on-Don, Russia)

3 Don State Technical University (Rostov-on-Don, Russia)

Abstract:

Traditional Kalman-type tracking filters are based on a kinematic motion model, which leads to the occurrence of dynamic errors, which significantly increase during target maneuvering. One of the solutions to this problem is to develop a model of motion dynamics with the ability to adapt its structure to external influences.

It is shown that the use of a dynamic model of motion in the filter, which takes into account the inertia of the target and the forces acting on it, makes it possible to significantly increase the efficiency of the state assessment.

Purpose is to development of an algorithm for assessing the position of a maneuvering object, effective in terms of accuracy criterion. The use of an adaptive motion model as part of the filter provides an increase in the estimation accuracy in comparison with the classical Kalman filter, which is confirmed by the performed numerical modeling.

Pages: 14-25
For citation

Kostoglotov A.A., Penkov A.S., Lazarenko S.V. Structural-parametric synthesis of the tracking filter based on decomposition by the target functional with adaptation to trajectory disturbances. Information-measuring and Control Systems. 2021. V. 26. № 2. P. 14−25. DOI: https://doi.org/10.18127/j20700814-202102-02 (in Russian)

References
  1. Eurocontrol Standard Document for Radar Surveillance in En-Route Airspace and Major Terminal Areas. 10110000101st ed. March 1997.
  2. Kangwagye S., Choi J.W. Design of a tracking filter suitable for 2D motion dynamics of an off-road target. 17th International Conference on Control, Automation and Systems (ICCAS). 2017. P. 379−382.
  3. Gutorov A.S. Matematicheskoe modelirovanie i isledovanie algoritmov fil’tratsii pri traektornoy obrabotke dannykh po tselyam. Avtomatizatsiya protsessov upravleniya. 2015. № 1(39). S. 34−40. (in Russian)
  4. Merkulov V.I., Kanashchenkov A.I., Perov A.I., Drogalin V.V. Otsenivanie dal’nosti i skorosti v radiolokatsionnykh sistemakh. Ch. 1. M.: Radiotekhnika. 2004. 312 s. (in Russian)
  5. Konovalov A.A. Osnovy traektornoy obrabotki radiolokatsionnoy informatsii. SPb: SPbGETU «LETI». 2014. 180 s. (in Russian)
  6. Yuan X., Lian F., Han C. Models and algorithms for tracking target with coordinated turn motion. Mathematical prooblems in engineering. January 2014. P. 1−10.
  7. Hu Z., Xu W., Yan L., Peng J., Liang B. Dynamic Closest Point Identification and Estimation for Tumbling Target Capturing. 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2018.
  8. Hajjaran H., Goldenberg A.A. Real-time motion planning of an autonomous mobile manipulator using a fuzzy adaptive Kalman filter. Robotics and Autonomous Systems. February 2007. № 66(2). P. 69−106.
  9. Lee B.J., Park J., Joo Y.H. IMM Algorithm Using Intelligent Input Estimation for Maneuvering Target Tracking. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences E88-A(5). 2005.
  10. Zhou X., Wei G., Wang S.W.A.D. Three-Dimensional ISAR Imaging Method for High-Speed Targets in Short-Range Using Impulse Radar Based on SIMO Array. Sensors. 2016. № 16.
  11. Kostoglotov A.A., Kuznetsov A.A., Lazarenko S.V., Deryabkin I.V. Metod strukturnoy adaptatsii diskretnykh algoritmov ob’‘edinennogo printsipa maksimuma v zadachakh otsenki parametrov dvizheniya. Informatsionno-upravlyayushchie sistemy. 2016. № 6. P. 10−15. (in Russian)
  12. Kostoglotov A.A., Kuznetsov A.A., Lazarenko S.V. Sintez modeli protsessa s nestatsionarnymi vozmushcheniyami na osnove maskimuma funktsii obobshchennoy moshchnosti. Matematicheskoe modelirovanie. 2016. T. 28. № 12. S. 133−142. (in Russian)
  13. Kostoglotov A.A., Pen’kov A.S., Lazarenko S.V. Metod sinteza adaptivnykh algoritmov otsenki parametrov dinamicheskikh sistem na osnove printsipa dekompozitsii i metodologii ob’‘edinnogo printsipa maksimuma. Izvestiya VUZovy. Severo-Kavkazskiy region. Ser.: Estestvennye nauki. 2020. № 4(208). S. 22−28. (in Russian)
  14. Lur’e A.I. Analiticheskaya mekhanika. M.: Gosudarstvennoe izd-vo fiziko-matematicheskoy literatury. 1961. 824 s. (in Russian)
  15. Kostoglotov A.A., Pen’kov A.S. Otsenka parametrov datchikov polozheniya s tekushchey adaptatsiey modeli. Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya. 2017. S. 184−190. (in Russian)
  16. Kostoglotov A.A., Lazarenko S.V. Sintez adaptivnykh sistem soprovozhdeniya na osnove gipotezy o statsionarnosti gamil’toniana geperpoverkhnosti pereklyucheniya. Radiotekhnika i elektronika. 2017. T. 62. № 2. S. 121−125. (in Russian)
  17. Seydzh E.P., Melsa D.L. Identifikatsiya sistem upravleniya. M.: Nauka. 1974. (in Russian)
  18. Kostoglotov A.A., Kuznetsov A.A., Lazarenko S.V., Losev V.A. Sintez fil’tra soprovozhdeniya so strukturnoy adaptatsiey na osnove ob’‘edinennogo printsipa maksimuma. Informatsionno-upravlyayushchie sistemy. 2015. № 4(77). S. 2−9. (in Russian)
  19. Kostoglotov A.A., Kuznetsov A.A., Lazarenko S.V., Tsennykh B.M. Analiz variantov realizatsii fil’trov soprovozhdeniya na osnove ob’‘edinennogo printsipa maksimuma. XX Mezhdunar. nauchno-tekhnich. konf. «Radiolokatsiya, navigatsiya, svyaz’» (RLNC-2014). Voronezh. 2014. S. 1734−1743. (in Russian)
  20. Kostoglotov A.A., Lazarenko S.V., Kuznetsov A.A., Deryabkin I.V., Losev V.A. Strukturnyy sintez diskretnykh adaptivnykh sledyashchikh sistem na osnove ob’‘edinennogo printsipa maksimuma. Vestnik donskogo gosudarstvennogo tenicheskogo universiteta. 2017. T. 17. № 1(88). S. 105−112. (in Russian)
  21. Lazarenko S.V., Kostoglotov A.A., Agapov A.A., Lyashchenko Z.V. Sintez kvazioptimal’nogo mnogorezhimnogo zakona upravleniya na osnove usloviya maksimuma funktsii obobshchennoy moshchnosti i printsipa osvobozhdaemosti. Izvestiya VUZov. Severo-Kavkazskiy region. Ser.: Estestvennye nauki. 2020. № 4(208). S. 29−35. (in Russian)
  22. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh sistem. SPb. 2009. 280 s. (in Russian)
  23. Farina A., Studer F.A. Radar data processing. Volume I – Introduction and tracking. New York: Research Studies Press. 1985. 348 p.
  24. Ng B., Tran H., Martorella M., Giusti E., Salvetti F., Phan A. Estimation of the Total Rotational Velocity of a Non-Cooperative Target with a High Cross-Range Resolution 3D InISAR System. IET Radar Sonar Navigation. 2017. № 11.
  25. Zhang Y., Yang Q., Deng B., Qin Y.L., Wang H. Estimation of Translational Motion Parameters in Terahertz Interferometric Inverse Synthetic Aperture Radar (InISAR) Imaging Based on a Strong Scattering Centers Fusion Techniqu. Remote Sensing. 2019. № 11.
Date of receipt: 23.02.2021 г.
Approved after review: 17.03.2021 г.
Accepted for publication: 08.04.2021 г.