D.A. Roschin ¹
1 FSBI «3 CNII» of Russia Defense Ministry (Moscow, Russia)
The results of studies evaluating the influence of various visual features of a sighting target on the probability of its detection by an optoelectronic device are presented. The purpose of this study is to identify the most significant visual features of the sighting target, which contribute to reducing the probability of false recognition of foreign objects with similar features by an optoelectronic device. For this purpose, the influence of such features as the color, shape and frequency of flashing of the sighting target was evaluated. According to the results of the research, it is concluded that the combination of the considered visual features provides a high probability of detecting a sighting target even in conditions of insufficient visibility and contributes to an increase in the range of its detection.
Roschin D.A. Evaluation of the influence of visual features of the sighting target on the probability of detection by an optoelectronic device. Information-measuring and Control Systems. 2021. V. 19. № 1. P. 5−13. DOI: 10.18127/j20700814-202101-01 (In Russian).
- Vinogradov A.V., Vojtenko A.V. Sovremennye tehnologii geodezicheskih izyskanij: Ucheb. posobie. Omsk: SibADI. 2012. 111 s. (In Russian).
- Mao J., Nindl D. Surveying Reflectors – White Paper Characteristics and Influences. Switzerland: Leica Geosystems AG. 2009.URL:https://w3.leica-geosystems.com/downloads123/zz/accessory/accessories/white-tech-paper/white%20paper%20surveying%20reflectors_en.pdf (data obrashhenija: 24.12.2020).
- Klimkov Ju.M., Horoshev M.V. Lazernaja tehnika: uchebnoe posobie. M.: MIIGAiK. 2014. 143 s. (In Russian).
- Karasik V.E. Analiz vozmozhnosti povyshenija pomehoustojchvosti lazernyh lokacionnyh sistem, ispol'zujushhih jeffekt svetovozvrashhenija pri obnaruzhenii skrytoj kamery videonabljudenija. Jelektromagnitnye volny i jelektronnye sistemy. 2014. № 6. S. 54-59 (In Russian).
- Vladimirova M.R., Alejnikova I.Ju., Kalinina I.V. Avtomatizacija topograficheskih s’emok. Chast' I. Rabota s jelektronnym taheometrom: uchebno-metodicheskoe posobie. M.: MIIGAiK. 2018. 36 s. (In Russian).
- Song Y., Fan R., Huang S., et al. A three-stage real-time detector for traffic signs in large panoramas. Computational Visual Media. 2019. № 5. P. 403-416. DOI: 10.1007/s41095-019-0152-1.
- Stubendek A, Karacs K. et al. Shape Recognition Based on Projected Edges and Global Statistical Features. Mathematical Problems in Engineering. 2018. Article ID 4763050. 18 p. DOI: 10.1155/2018/4763050.
- Houser K., Mossman M., Smet K. Color Rendering and Its Applications in Lighting. LEUKOS. 2016. № 12. P. 7−26. DOI: 10.1080/15502724.2014.989802.
- Roshhin D.A. Metodika primenenija sistem tehnicheskogo zrenija dlja beskontaktnyh izmerenij parametrov ob’ektov na primere vozdushnoj razvedki. Prikladnaja informatika. 2017. № 5. S. 107–121 (In Russian).
- Bokshanskij V.B., Bondarenko D.A., Vjazovyh M.V i dr. Lazernye pribory i metody izmerenija dal'nosti: Ucheb. posobie. M.: MGTU im. N.Je. Baumana. 2012. 92 s. (In Russian).
- Gander W., Golub G. H., Strebel R. Least-squares fitting of circles and ellipses. BIT. 1994. V. 34. № 4. P. 558–578. DOI: 10.1007/BF01934268.