350 rub
Journal Information-measuring and Control Systems №4 for 2020 г.
Article in number:
Image blurring as an informative parameter of the state of the research object
DOI: 10.18127/j20700814-202004-09
UDC: 004.93, 623.618
Authors:

D.A. Loktev – Ph.D.(Eng.), Associate Professor, 

Department «Information Systems and Telecommunications», Bauman Moscow State Technical University

E-mail: loktevdan@bmstu.ru

Abstract:

When analyzing images obtained with the help of photo and video cameras, the resulting blurring of the object image is considered as a noise parameter, for the elimination of which computational power is spent. At the same time, blurring carries, among other things, useful information about the object under study, which can be used in information and measurement monitoring systems using computer vision methods.

Goal of the work is to build a model for blurring the image of an object on an image used as primary data for the operation of an automated monitoring and control system for mobile and stationary objects.

The components of blurring the image of an object in the image are defined. The influence of environmental characteristics, color components of the object image and background on the image, parameters of the position in space and movement of the object and detector, settings of photo or video detectors, as well as parameters of image processing when saving it to a file is taken into account. The proposed model allows us to present the image blur function of the object under study as an important informative criterion that can be used to determine the geometric and kinematic parameters of the state and behavior of the object under control and monitoring.

Pages: 78-111
References
  1. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii. M.: Tekhnosfera. 2012. 1104 s. (In Russian).
  2. Zhigulina I.V Vozmozhnosti avtomaticheskogo raspoznavaniya dvizhushchikhsya izobrazhenii. Uspekhi sovremennoi radioelektroniki. 2012. № 4. S. 43−47. (In Russian).
  3. Favorskaya M.N., Shilov A.S. Algoritmy realizatsii otsenki dvizheniya v sistemakh videonablyudeniya. Sistemy upravleniya i informatsionnye tekhnologii. IPU RAN, VGTU. 2008. № 3.3(33). S. 408−412. (In Russian).
  4. Robertson G., Mackinlay J., Card S. Information visualization using 3D interactive animation. Communications of the ACM. 1993. V. 36. № 4. P. 57−71.
  5. Tan X., Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on image processing. June 2010. V. 19. № 6. P. 1635−1650.
  6. Sun Z., Bebis G., Miller R. On-road vehicle detection using optical sensors: A review. Proc. of the IEEE International Conference on Intelligent Transportation Systems. 2004. V. 6. P. 125−137.
  7. Koltsov P.P. Otsenka razmytiya izobrazheniya. Kompyuternaya optika. 2011. T. 35. № 1. S. 95−102. (In Russian).
  8. Lin H.-Y., Chang C.-H. Depth from motion and defocus blur. Optical Engineering. December 2006. V. 45(12). № 127201. P. 1−12.
  9. Gurkina E.D., Kruchinin I.I. Poisk polnostyu razmytykh izobrazhenii, poluchennykh v rezultate dvizheniya kamery. Elektronnyi zhurnal: nauka, tekhnika i obrazovanie. 2018. № 1(17). S. 83−88. (In Russian).
  10. Loktev D.A., Loktev A.A. Determination of object location by analyzing the image blur. Contemporary Engineering Sciences. 2015. V. 8. № 9. P. 467−475.
  11. Loktev D.A., Loktev A.A. Development of a user interface for an integrated system of video monitoring based on ontologies. Contemporary Engineering Sciences. 2015. V. 8. № 20. P. 789−797.
  12. Loktev D.A., Alfimtsev A.N. Izmerenie rasstoyaniya do dvizhushchegosya obieekta s pomoshchyu kompleksnoi sistemy videomonitoringa. Inzhenernyi zhurnal: nauka i innovatsii. 2013. № 11(23). 4 s. (In Russian).
  13. Loktev A.A., Loktev D.A. Vyyavlenie i detektirovanie vneshnikh defektov verkhnego stroeniya puti agregirovannym metodom na osnove stereozreniya i analiza razmytiya obraza. Vnedrenie sovremennykh konstruktsii i peredovykh tekhnologii v putevoe khozyaistvo. 2017. T. 11. № 11(11). S. 96−100. (In Russian).
  14. Loktev D.A., Loktev A.A. Diagnostics of external defects of railway infrastructure by analysis of its images. Proc. of 2018 Global Smart Industry Conference. GloSIC 2018. P. 8570083.
  15. Loktev A.A., Loktev D.A. Otsenka izmerenii rasstoyaniya do obieekta pri issledovanii ego graficheskogo obraza. Vestnik MGSU. 2015. № 10. S. 54−65. (In Russian).
  16. Kobelev K.S., Minin Yu.V., Lakomov D.V., Kovalev S.V. Informatsionnaya sistema raspoznavaniya obieektov na tsifrovykh izobrazheniyakh. Informatsiya i bezopasnost. 2017. T. 20. № 3. S. 392−401. (In Russian).
  17. Buldakova T.I., Suyatinov S.I. Hierarchy of human operator models for digital twin. Proc. of 2019 International Russian Automation Conference. RusAutoCon 2019. P. 886760.
  18. Chumachenko K.K. Problemy integratsii algoritmov kompyuternogo zreniya v sistemy videonablyudeniya. Vestnik nauki i obrazovaniya. 2019. № 9−2(63). S. 12−17. (In Russian).
Date of receipt: 27 апреля 2019 г.