350 rub
Journal Information-measuring and Control Systems №4 for 2020 г.
Article in number:
Characteristic coefficients for radiophysical diagrams correspondence estimation
DOI: 10.18127/j20700814-202004-08
UDC: 51-73
Authors:

I.A. Damaratskiy – Ph.D.(Eng.), Senior Research Scientist, 

Bauman Moscow State Technical University

E-mail: IDamaratskiy@yandex.ru

Abstract:

Article is dedicated to mathematical tool for sphere of radiolocation, radio engineering, applied electrodynamics, radiophysics. Subject of investigation is principles of comparison of radiophysical data (for example, theoretical and experimental results): diagrams or functions with lobes and narrow dips, numerical estimation of its correspondence. This is actually for tasks of theoretical or experimental methods verification, control automatization (in view of object-etalon radiophysical data deviation), estimations in research works.

Realizing estimation colleagues encounter problems. Correlation coefficient estimates linear dependence degree substantially in zone of large values and disparagingly in zone of small values. This isn’t fit for radiophysical data diagrams, which often have large dynamic range. Standard deviation and diverse objectives (in absolute or relative values), as shown in paper, aren’t serve as adequate estimation of correspondence and lead to loss of important information about correspondence. As a rule colleagues limit themselves to visual observing or certain parameters ratio. The first thing is subjective and inapplicable for automatization, the second thing doesn’t provide complete insight into data diagrams.

For numerical estimation of radiophysical data diagrams correspondence regardless of absolute values (for data with whatever dynamic range) and with diagrams characters correspondence glance author justifies characteristic coefficients, which must be applied

 

Δ

1

2

1

i

i

n

i

i

i

Z

DV

Y

n

Z

=

=

=

1

2

1

i

i

n

i

i

i

Y

Z

n

Y

=

=

in common: ranged characteristic coefficient D and average relative error Δ :

 

                              n Yi                                                n Zi

                             ∑                                 ∑                                 ⎡         Δmax                                  min ⎤

                                            +(1−V)                         ,   Δ =10lg⎢⎣V ⋅10 10        +(1−V) 10⋅   10 ⎥⎦,

where n – quantity of terms in each of compared diagrams; Yi and Zi – i diagrams terms; ∆min and ∆max – parameters for commutation offset; V – weighting coefficient (from 0 to 1).

 

D (nondimensional quantity) is estimation of compared diagrams characters correspondence, it’s initial. Δ (dB) is estimation of

 

compared diagrams deviation, it can be considered as a linear dependence coefficient, if D is larger than criteria of good diagrams characters correspondence. In paper discrete-to-integral transition is considered – addition is interchanged by integration.

D and Δ are numerical estimation of radiophysical data diagrams correspondence. Its values allowed to reveal compared diagrams features and to classify correspondence cases (fig. 2), that is importance of coefficients.

Large value of D and small value of Δ indicate good compared diagrams correspondence (fig. 2, zone of good correspondence). Large values of D and Δ signal to operator about possible errors in calibration of experimental plant (fig. 2, zone of «calibration er-

 

rors»). Small value of Δ and not great value of D indicate «surges» (narrow dips/peaks) in compared diagrams, that can be by

 

reason of failures in calculation, measuring, results handling. Small value of D and large value of Δ indicate bad compared diagrams correspondence (fig. 2, zone of bad correspondence).

Long experience of practical application has corroborated importance of characteristic coefficients.

Pages: 68-77
References
  1. Maks Zh. Metody i tekhnika obrabotki signalov pri fizicheskikh izmereniyakh: V 2-kh tomakh. Per. s frants. M.: Mir. 1983. T. 1. 312 s. (In Russian).
  2. Damaratskii I.A. Otsenka tochnosti vychislenii CST Microwave Studio effektivnoi poverkhnosti rasseyaniya obieektov tipovoi geometricheskoi formy. Vestnik Moskovskogo aviatsionnogo instituta. 2014. T. 21. № 1. S. 124−134. (In Russian).
  3. Fábio Júlio F. Gonçalves, Alfred G.M. Pinto, Renato C. Mesquita, Elson J. Silva, Adriana Brancaccio Free-Space Materials Characterization by Reflection and Transmission Measurements using Frequency-by-Frequency and Multi-Frequency Algorithms. Electronics. 2018. V. 7. № 260. DOI: 10.3390/electronics7100260.
  4. Savitri D.I., Azzahra A.A., Wulandari P., Rahmatia S. Comparison between Hollow Aluminum Yagi-Uda and Dipole Antenna for Indoor Antenna TV. IOP Conf. Series: Materials Science and Engineering. 2018. V. 453. DOI: 10.1088/1757-899X/453/1/012034.
  5. Amoskov V.M., Arslanova D.N., Bazarov A.M., Belov A.V., Belyakov V.A., Belyakova T.F., Vasilev V.N., Gapionok E.I., Zaitsev A.A., Zenkevich M.Yu., Kaparkova M.V., Kukhtin V.P., Lamzin E.A., Larionov M.S., Maksimenkova N.A., Mikhailov V.M., Nezhentsev A.N., Ovsyannikov D.A., Ovsyannikov A.D., Rodin I.Yu., Sychevskii S.E., Firsov A.A., Shatil N.A. Chislennoe modelirovanie elektrodinamicheskikh podvesov levitatsionnykh transportnykh sistem. IV. EDP s diskretnoi putevoi strukturoi. Vestnik SPbGU. Ser. 10. Prikladnaya matematika. 2016. № 3. S. 4−17. DOI: 10.21638/11701/spbu10.2016.301. (In Russian).
  6. Mocker M.S.L., Hipp S., Spinnler F., Tazi H., Eibert T.F. Comparison of electromagnetic solvers for antennas mounted on vehicles. Adv. Radio Sci. 2015. V. 13. P. 49−55. DOI: 10.5194/ars-13-49-2015.
  7. Alf Köhn, Max E. Austin, Michael W. Brookman, Kenneth W. Gentle, Lorenzo Guidi, Eberhard Holzhauer, Rob J. La Haye, Jarrod B. Leddy, Omar Maj, Craig C. Petty, Emanuele Poli, Antti Snicker, Matthew B. Thomas, Roddy G.L. Vann, Hannes Weber The deteriorating effect of plasma density fluctuations on microwave beam quality. EPJ Web of Conferences 203. 01005. 2019. URL = https://doi.org/10.1051/epjconf/201920301005 (data obrashcheniya: 22.01.2020).
  8. Lobanov B.S., Damaratskii I.A., Mironov Yu.M. Otsenka tochnosti sovremennykh kompyuternykh programm dlya vychisleniya effektivnoi poverkhnosti rasseyaniya obieektov. Nauka i obrazovanie. Izd. FGBOU VPO «MGTU im. N.E. Baumana». 2013. № 9. DOI: 10.7463/0913.0623058. URL = http://engineering-science.ru/doc/623058.html (data obrashcheniya: 22.01.2020). (In Russian).
Date of receipt: 4 июня 2020 г.