350 rub
Journal Information-measuring and Control Systems №3 for 2020 г.
Article in number:
Analysis of the error sources in the navigation system of a small unmanned helicopter
DOI: 10.18127/j20700814-202003-07
UDC: 656.052
Authors:

A.V. Abakumov – Head of Unmanned Systems Laboratory,  JSC «Design Bureau of Industrial Automatics» (Saratov)

E-mail: a.abakumov@kbpa.ru

E.N. Skripal – Main Designer, 

JSC «Design Bureau of Industrial Automatics» (Saratov)

E-mail: e.scripal@kbpa.ru

D.Yu. Livshits – Leading Engineer of Unmanned Systems Laboratory,  JSC «Design Bureau of Industrial Automatics» (Saratov)

E-mail: d.livshits@kbpa.ru

I.K. Kuzmenko – Engineer of Unmanned Systems Laboratory, 

JSC «Design Bureau of Industrial Automatics» (Saratov)

E-mail: i.kuzmenko@kbpa.ru

A.A. Seranova – Engineer of Unmanned Systems Laboratory,  JSC «Design Bureau of Industrial Automatics» (Saratov)

E-mail: a.seranova@kbpa.ru

R.V. Ermakov – Ph.D.(Eng.), Leading Engineer of Unmanned Systems Laboratory, 

JSC «Design Bureau of Industrial Automatics» (Saratov)

E-mail: roma-ermakov@yandex.ru

Abstract:

The analysis of the sources of errors in the navigation system of a small unmanned aerial vehicle is carried out, the degree of their influence on the final navigation solution is investigated. If navigation devices use measurements from several sensors to create a navigation solution, the accuracy of the navigation solution is determined by the ability of the device to detect and eliminate unreliable measurements from calculations that occur in any of the sensors. To solve this problem, an attempt is made in the work to determine the main failure scenarios in the navigation sensors or systems used to calculate the navigation solution. For small-sized navigation systems that are implemented using inexpensive microelectromechanical systems (MEMS), the quality of satellite navigation system signals (SNA) plays a significant role in the reliability of the navigation solution. Given this, the problem of reliability is divided into two groups, one of which is related to the quality of positioning from SNA signals, the other is related to errors that occur when using other sensors. Regardless of the categorization, the reliability of the general navigation solution can only be improved by eliminating the use of dangerous and misleading information from any of the sensors used.

It is shown that failures and inaccurate information from individual sensors can be excluded from the final navigation solution without significant damage to the latter. An overview of statistical methods for detecting inaccurate initial data of navigation systems is given. Simulation data and experimental data are obtained for some sensors of the integrated navigation system of an unmanned aerial vehicle.

The article contains 1 figure and links to 13 sources of information.

Pages: 60-68

​​​​​​

References
  1. Abakumov A.V., Gutsevich D.E., Ermakov R.V., Livshits D.Yu., Romadin S.N., Seranova A.A., Sergushov I.V., Skripal’ E.N. Osobennosti konstruirovaniya pilotazhno-navigatsionnykh kompleksov dlya malykh bespilotnykh letatel’nykh apparatov razlichnogo tipa. XXIV SanktPeterburgskaya Mezhdunar. konf. po integrirovannym navigatsionnym sistemam. SPb.: Izd-vo TsNII «Elektropribor». 2017. S. 142−152. (In Russian).
  2. Ermakov R.V., Kondratov D.V., L’vov A.A., Skripal’ E.N. Osobennosti primeneniya mikromekhanicheskikh inertsial’nykh datchikov pri ekspluatatsii na letatel’nykh apparatakh vertoletnogo tipa. Trudy Mezhdunar. simpoziuma «Nadezhnost’ i kachestvo». 2017. T. 2. S. 122−124. (In Russian).
  3. Mishra P. and Enge P. Global Positioning System: Signals, Measurements, and Performance. Ganga-Jamuna Press. Loncoln MA. 2011 P. 3−66.
  4. Leick A. GPS Satellite Surveying. 3rd ed. John Wiley & Sons, Inc. Hoboken, NJ. 2004.
  5. GOST R 50779.10-2000 Statisticheskie metody. Veroyatnost’ i osnovy statistiki. Terminy i opredeleniya M.: «Moskovskiy pechatnik». 2000. 46 s. (In Russian).
  6. Baarda W. Statistical Concepts in Geodesy. Netherlands Geodetic Commission. 1967. V. 2. № 4.
  7. GOST 4401-81 Atmosfera standartnaya. Parametry. M.: IPK Izd-vo standartov. 2004. 180 s. (In Russian).
  8. Nikolaenko A.Yu., L’vov A.A., L’vov P.A. Kompensatsiya temperaturnoy pogreshnosti intellektual’nykh datchikov davleniya. Trudy Mezhdunar. simpoziuma «Nadezhnost’ i kachestvo». 2014. T. 2. S. 57−59. (In Russian).
  9. Konovalov R.S., L’vov A.A. Vysokotemperaturnye datchiki davleniya. Trudy Mezhdunar. simpoziuma «Nadezhnost’ i kachestvo». 2014. T. 2. S. 48−50. (In Russian).
  10. McLellan J.F., Schleppe J., McLintock D. and Deren G. GPS/barometry heightaided positioning system. Proc. of IEEE/ION PLANS 1994. 11−15 April, Las Vegas, NV. P. 369−375.
  11. Ermakov R.V., Popov A.N., Skripal’ E.N., Kalikhman D.M., Kondratov D.V., L’vov A.A. Metody i rezul’taty ispytaniy inertsial’nykh datchikov, prednaznachennykh dlya ekspluatatsii na letatel’nykh apparatakh vertoletnogo tipa. XXIV Sankt-Peterburgskaya Mezhdunar. konf. po integrirovannym navigatsionnym sistemam. SPb.: Izd-vo TsNII «Elektropribor». 2017. S. 244−248. (In Russian).
  12. Skorobogatov V.V., Grebennikov V.I., Kalikhman L.Ya., Kalikhman D.M., Nakhov S.F., Ermakov R.V. Rezul’taty eksperimental’noy otrabotki termoivariantnogo kvartsevogo mayatnikovogo akselerometra s tsifrovoy obratnoy svyaz’yu i pereprogrammiruemym diapazonom izmereniya. XXIII Sankt-Peterburgskaya Mezhdunar. konf. po integrirovannym navigatsionnym sistemam. SPb.: Izd-vo TsNII «Elektropribor». 2016. S. 139−157. (In Russian).
  13. Thacker N.A., Aherne F.J. and Rockett P. The Bhattacharyya Metric as an Absolute Similarity Measure for Frequency Coded Data. Kybernetika. 1998. V. 34. № 4. P. 363−368.
Date of receipt: 11 марта 2020 г.