350 rub
Journal Information-measuring and Control Systems №3 for 2020 г.
Article in number:
The long-term oscilloscope system with pattern recognition function
DOI: 10.18127/j20700814-202003-04
UDC: 621.317.757
Authors:

D.A. Nedorezov – Ph.D.(Eng.), Associate Professor, 

Department of Computer Engineering, Institute of Space and Information Technology, 

Siberian Federal University (Krasnoyarsk)

E-mail: nedorezovd@mail.ru

D.O. Nepomnyaschy – Student, 

Department of Computer Engineering, Institute of Space and Information Technology, 

Siberian Federal University (Krasnoyarsk)

E-mail: Vebs_mail@mail.ru

A.A. Kopytov – Student, 

Department of Computer Engineering, Institute of Space and Information Technology, 

Siberian Federal University (Krasnoyarsk)

E-mail: harrier97@mail.ru

V.N. Khaidukova – Student, 

Department of Computer Engineering, Institute of Space and Information Technology, 

Siberian Federal University (Krasnoyarsk)

E-mail: valeriya_iks@mail.ru

Abstract:

For an in-depth study of the characteristics of electrical signals, it is important to record them for a long time (up to a year). This allows their in-depth analysis for the presence of rare events that are displayed as signal anomalies or so-called «artifacts». To conduct such research, it is important to create systems of long-term oscillography (LTO).

Developed LTO based on the PXI architecture. The number of its channels is easily scaled by installing additional or removing extra modules of the crate-chassis (up to 200 channels). LTO is able, synchronously in all channels, to record data from objects of control for a long time without any loss of useful information. The data is stored on hard drives or raid arrays and can be transferred to any storage media without interrupting experiments. LTO is mobile, each crate can be transported by one person over long distances without vehicle. LTO can be supplemented with any modular hardware in the PXI standard, if advanced control and data acquisition functionality is required.

The target LTO software is implemented using the NI LabVIEW and Borland C ++ programming systems and allows you to simply configure the LTO for the required tasks, display and record electrical signals and convert the recorded data into various formats. The main advantage of the proposed LMS is an intelligent system of automated, and in some cases, automatic analysis of huge arrays of recorded waveforms for the presence of anomalies in them. This system is protected by a patent of the Russian Federation for an invention and allows you to simplify and speed up the process of analysis while increasing its effectiveness.

The distinctive essence of the proposed LTO is that it simultaneously allows:

  1. keep a long recording of electrical signals without any loss of data received from objects of control;
  2. record and reproduce data characterizing electrical signals received from objects of control over multiple channels (up to 200), all channels being synchronized with each other;
  3. automatically analyze huge amounts of oscillograms received from control objects for the presence of signal anomalies;
  4. to set up and control your work in simple ways, no more difficult than «box» oscilloscopes;
  5. carry the equipment over long distances without using vehicle;
  6. to use as part of a long-term oscilloscope system any PXI test equipment (PXIe, cPCI), for example, control modules for various interfaces, programmable power supplies, generators, etc.

Thus, the proposed system of long-term oscillography provides long-term synchronous recording of electrical signals over multiple channels without data loss and at the same time extends the functionality and efficiency of technical solutions available on the market.

Pages: 36-42
References

 

  1. Isaeva O., Nozhenkova L. Spacecraft onboard equipment testing automation technology on the basis of simulation model. IOP Conference Series: Materials Science and Engineering. 2019. № 537(3). P. 032067. 
  2. Sait kompanii Tektronix. Sistema Wave Inspector [Elektronnyi resurs]. URL = https://ru.tek.com/document/anwendungshinweis/waveinspector%C2%AE-navigation-and-search-simplifying-waveform-analysis (data obrashcheniya 10.12.2019).
  3. Sait kompanii Teledyne Lecroy. Sistema Wave Scan [Elektronnyi resurs]. URL = https://teledynelecroy.com/doc/wavescan-inwavesurfer-3000z-oscilloscopes (data obrashcheniya 10.12.2019).
  4. Nguen Ch.T., Yuldashev Z.M., Sadykova E.V. Sistema udalennogo monitoringa serdechnogo ritma dlya vyyavleniya epizodov fibrillyatsii predserdii. Meditsinskaya tekhnika. 2017. № 3(303). S. 28−31. (In Russian).
  5. Nepomnyashchii O.V., Pravitel A.S., Mambetaliev N.A., Komarov A.A. Moduli tverdotelnoi pamyati dlya bortovoi apparatury malykh kosmicheskikh apparatov. Naukoemkie tekhnologii. 2015. T. 16. № 3. S. 71−76. (In Russian).
  6. Gant K., Bohorquez J., Thomas C.K. Long-term recording of electromyographic activity from multiple muscles to monitor physical activity of participants with or without a neurological disorder. Biomedizinische Technik. 2019. № 64(1). P. 81−91.
  7. Pichkalev A.V. Apparatura dolgovremennogo progona dlya otrabotki uzlov bortovoi apparatury. Materialy XVIII Mezhdunar. nauchnoi konf. «Reshetnevskie chteniya». Krasnoyarsk. 2014. S. 240−241. (In Russian).
  8. Sait kompanii                Teledyne                Lecroy.   Obzornyi                katalog. Ostsillografy         i               analizatory         protokolov            [Elektronnyi           resurs]. URL = http://cdn.teledynelecroy.com/files/pdf/labmaster-10zi-a-datasheet.pdf (data obrashcheniya 10.12.2019).
  9. Sait kompanii Teledyne Lecroy. Sistema Trigger Scan [Elektronnyi resurs]. URL = https://teledynelecroy.com/doc/triggerscantechnical-brief (data obrashcheniya 10.12.2019).
  10. Li F., Sun J., Xu T., Xu Z., Li P., Huang W., Zeng L., Meng M., Qiu R., Tian J., Yang T. Development of Custom Oscilloscope Based on CSNS Wall Current Monitor Data Acquisition. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology. 2019. № 53(9). P. 1715−1718.
  11. Sait kompanii Rohde & Schwarz [Elektronnyi resurs]. URL = https://www.rohde-schwarz.com/ru/product/rtc1000productstartpage_63493-515585.html (data obrashcheniya 11.03.2019).
  12. Sait kompanii Tektronix [Elektronnyi resurs]. URL = https://www.tek.com/oscilloscope/tds2000-digital-storage-oscilloscope (data obrashcheniya 10.12.2019).
  13. Li Z., Hu X., Zhang G. Design and realization of HA hot-swap application for CPCI/PXI system. Proc. of the 2014 9th IEEE Conference on Industrial Electronics and Applications. ICIEA 2014. P. 1898−1902.
  14. Li D., Hu X. Hot-swap and redundancy technology for CPCI measurement and control systems. Proc. of the 2016 IEEE 11th Conference on Industrial Electronics and Applications. ICIEA 2016. P. 1355−1358.
  15. Krasnenko S.S., Nedorezov D.A., Pichkalev A.V., Nepomnyashchii O.V. Primenenie PLIS dlya modelirovaniya logiki funktsionirovaniya bortovoi radioelektronnoi apparatury kosmicheskikh apparatov. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akad. M.F. Reshetneva. 2014. № 1(53). S. 133−136. (In Russian).
  16. Avt. svid-vo o registratsii programmy dlya EVM № 2017663519 ot 07.12.2017 g. Mnogokanalnyi samopisets. Nedorezov D.A. (In Russian).
  17. Pat. RF № 2684203 MPK G06K 11/00 ot 04.04.2019 g. Sposob intellektualnogo analiza ostsillogramm. Nedorezov D.A. (In Russian).
Date of receipt: 16 января 2020 г.