350 rub
Journal Information-measuring and Control Systems №2 for 2020 г.
Article in number:
The method of measuring the coefficient of radio tightness
DOI: 10.18127/j20700814-202002-09
UDC: 621.31
Authors:

A.A. Larin – Construction Engineer,

JSC «Typhoon» (Kaluga)

E-mail: larintema@ya.ru

N.V. Samburov – Head of Department,

JSC «Typhoon» (Kaluga) 

E-mail: samburov.n.v@yandex.ru

Abstract:

Shielding effectiveness of microwave compounds is understood to mean their property to localize electromagnetic oscillations within their design or to prevent the penetration of electromagnetic energy into the compound. In practice, when assessing the magnitude of the Shielding effectiveness Nr , one encounters a problem associated with the difficulty of direct measurements of the power of a stray signal seeping through the connection structure (radiated outward). Also known methods [3, 4] require the use of specialized technological equipment.

The main advantage of the proposed method of measuring the coefficient of electrical leakage is the use of standardized measuring equipment and the absence of the need to use special technological equipment.

The tested microwave device with a load connected to the output, provided that the power is fully utilized in the load, can be considered as a hypothetical antenna device.

We assume that the source of non-shielding-effectiveness of the test compound is a local violation of the outer shell of the compound, in the form of a gap (crack). This violation can be considered as a slotted nonresonant emitter of infinitely small width

<<λ2 .

Using the principle of duality [9], the gap can be considered as an ideal planar symmetric vibrator. In this case, the equivalent coefficient of directional action of the compound Dэкв can be taken equal to 3 [10].

The calculation of the equivalent gain of a hypothetical device Gэкв is carried out according to the formula (6). The radiocontact

coefficient is found by: Nr =Dэкв .

Gэкв

Pages: 61-65
References
  1. GOSR 23611-79. Sovmestimost′ radioelektronnykh sredstv elektromagnitnaya. (in Russian).
  2. Vorob′ev E.A. Ekranirovanie SVCh-konstruktsii. M.: Sovetskoe radio. 1979. 136 s. (in Russian).
  3. Patent №2545340 (RF). Ustanovka i spososb izmereniya ekrannogo zatukhaniya. Goshin G.G., Semibratov V.P. Opubl. 27.03.2015. Byul. № 9 (in Russian).
  4. Patent №148121 (SSSR). Sposob izmereniya ekrannogo zatukhaniya koaksialnykh kabelei na SVCh i ustroistvo dlya ego osushchestvleniya / Lebedev K.V., Simonenko V.I. Opubl. 1962. Byul. № 12 (in Russian).
  5. Burundukovskaya N.N., Bol′shakov D.A. Metodika otsenki elektrogermetichnosti VCh-soedinenii. Molodoi uchenyi. 2016. Vyp. 22(126). S. 19-23 (in Russian).
  6. Mitsmakher M.Yu., Torgovanov V.A. Bezekhovye kamery SVCh. M.: Radio i svyaz′. 1982. 128 s. (in Russian).
  7. Samburov N.V., Rybakov D.Yu., Ivanov N.G. Kompaktnyi antennyi polygon v usloviyalh geometricheski ogranichennykh pomeshchenii. Elektromagnitnye volny i elektronnye sistemy. 2014. Т. 19. № 10. S. 25-32. (in Russian).
  8. Mikhailov A.S. Izmerenie parametrov EMS RES. M.: Svyaz′. 1980 (in Russian).
  9. Dorokhov A.P. Raschet i konstruirobaniye antenna-fedrnykh ustroistv. Khar′kov: Izd-vo Khar′kovskogo universiteta. 1960 (in Russian).
  10. Aizenberg G.Z. Antenny UKV. M.: Svyazizdat. 1957 (in Russian).
  11. Kuznetsova D.A. Elektrogermetichnost′ flantsevogo soedineniya s dielektricheskoi prokladkoi. Elektromagnitnye volny i elektronnye sistemy. 2013. Т. 18. № 10. S. 29−35 (in Russian).

 

Date of receipt: 7 февраля 2020 г.