350 rub
Journal Information-measuring and Control Systems №3 for 2017 г.
Article in number:
Identification of psychophysiological states of signers by autograph reproduction features
Authors:
A.E. Sulavko - Ph.D. (Eng.), Senior Lecturer, Department of Complex Information Security, Omsk State Technical University E-mail: sulavich@mail.ru H.A. Levitskaya - Ph.D. (Eng.), Research Engineer, The Russian Federal Nuclear Center - the All-Russian Research Institute Technical Physics of a n. of the academician E. I. Zababakhin (Snezhinsk) E-mail: Laska_kb@mail.ru A.V. Eremenko - Ph.D. (Eng.), Design Engineer, Research Part, Omsk State Transport University E-mail: nexus-@mail.ru A.E. Samotuga - Post-graduate Student, Omsk State Transport University E-mail: SamotugaSASHOK@mail.ru
Abstract:
Inrecenttime a manufacturing automation and an active implementation of information technologies have been occurred in large industrial enterprises. In spite of this a human mistake rate grows. A working man (e.g. operator, pilot) is under the influence of psychotropic substances or fatigue does not realize that he poses a danger. It may lead to accidents, mistakes or even cause a catastrophe. It is proposed to recognize the psycho-physiological state of the subject by reproduction of the signature in the feature space previously used for the identification of the signers. A database of signatures samples of subjects who are in calm, excited, relaxed, tired states, and a state of light intoxication was formed. Biometric identification features of signature images of a subject are proposed. An assessment of the state identification errors probabilities was conducted based on Bayes formula, the accumulation principle, Euclidean measure, Hamming measure, Pearson metric, Bayes-Pearson metrics and other approaches. In the present article a data that characterize the probability of identification errors of 2,3 and 5 psychophysiological states of signers that participated in the experiment are given.
Pages: 40-48
References

 

  1. Sistemy dispetcherskogo upravlenija i sbora dannykh (SCADA-sistemy) // Mir kompjuternojj avtomatizacii. 1999. № 3. S. 4-9.
  2. Mashin V.A. Psikhicheskaja nagruzka, psikhicheskoe naprjazhenie i funkcionalnoe sostojanie operatorov sistem upravlenija // Voprosy psikhologii. 2007. № 6. S. 86-96.
  3. Takhografy snizjat kolichestvo DTP po vine ustavshikh voditelejj. (http://space-team.com/pressa/detail/takhografy_ snizyat_kolichestvo_dtp/, data obrashhenija: 17.07.2016).
  4. Marcus J.H., Rosekind M.R. Fatigue in transportation: NTSB investigations and safety recommendations. Inj Prev. 2016 Feb 29. doi: 10.1136/injuryprev-2015-041791.
  5. Luzhnikov E.A. Klinicheskaja toksikologija. M.: Medicina. 1994. 256 s.
  6. The Global State of Information Security® Survey 2016. PricewaterhouseCoopers. (http://www.pwc.com/gx/en/issues/cyber-security/information-security-survey/download.html, data obrashhenija: 27.06.2016).
  7. Epifancev B.N. Skrytaja identifikacija psikhofiziologicheskogo sostojanija cheloveka-operatora v processe professionalnojj dejatelnosti: monografija. Omsk: Izd-vo SibADI. 2013. 198 s.
  8. Marsalek T., Matousek V., Mautner P., Merta M., Moucek R. Coherence of EEG signals and biometric signals of handwriting under influence of nicotine, alcohol and light drugs // Neural Network World. 2006. vol. 16(1). pp. 44.
  9. Lozhnikov P.S., Sulavko A.E. Tekhnologija identifikacii polzovatelejj kompjuternykh sistem po dinamike podsoznatelnykh dvizhenijj // Avtomatizacija i sovremennye tekhnologii. Mashinostroenie. 2015. № 5. S. 31-36.
  10. Epifancev B.N., Lozhnikov P.S., Sulavko A.E., ZHumazhanova S.S. Identifikacionnyjj potencial rukopisnykh parolejj v processe ikh vosproizvedenija // Avtometrija. 2016. № 3. S. 28-36.
  11. Mashin V.A., Mashina M.N. Klassifikacija funkcionalnykh sostojanijj i diagnostika psikhoehmocionalnojj ustojjchivosti na osnove faktornojj struktury pokazatelejj variabelnosti serdechnogo ritma // Rossijjskijj fiziologicheskijj zhurnal im. I.M. Sechenova. 2004. T. 90. № 12. S. 1508-1521.
  12. Fairclough S.H. (Ed.). Driver State Monitor (Report V2009/DETER/Deliverable 5 (330A)). Haren, The Netherlands: Traffic Research Centre, University of Groningen. 1994.
  13. Mascord D.J., Heath R.A. Behavioral and physiological indices of fatigue in a visual tracking task // Journal of Safety Research. 1992. V. 23. 19-25.
  14. Lozhnikov P.S., Sulavko, A.E., Volkov D.A. Application of noise tolerant code to biometric data to verify the authenticity of transmitting information / Control and Communications (SIBCON). 21-23 May 2015. Omsk, Russia - p.1-3. DOI: 10.1109/SIBCON.2015.7147126.
  15. Lozhnikov P.S., Sulavko A.E., Eremenko A.V., Volkov D.A. EHksperimentalnaja ocenka nadezhnosti verifikacii podpisi setjami kvadratichnykh form, nechetkimi ehkstraktorami i perseptronami // Informacionno-upravljajushhie sistemy / GUAP, Sankt-Peterburg. 2016. № 5. S. 73-85.
  16. Daubechies I. Ten lectures on wavelets. Philadelphia: S.I.A.M. 1992.
  17. Ivanov A.I. Nejjrosetevye algoritmy biometricheskojj identifikacii lichnosti / Pod red. A.I. Galushkina. Nauchnaja serija «Nejjrokompjutery i ikh primenenie» № 15. M.: Radiotekhnika. 2004. 144 s.
  18. Epifancev B.N., Lozhnikov P.S., Sulavko A.E. Cravnenie algoritmov kompleksirovanija priznakov v zadachakh raspoznavanija obrazov // Voprosy zashhity informacii. 2012. № 1. S. 60-66.
  19. Epifancev B.N., Lozhnikov P.S., Sulavko A.E. Algoritm identifikacii gipotez v prostranstve maloinformativnykh priznakov na osnove posledovatelnogo primenenija formuly Bajjesa // Mezhotraslevaja informacionnaja sluzhba. 2013. № 2. S. 57-62.
  20. Lozhnikov P.S., Ivanov A.I., Kachajjkin E.I., Sulavko A.E. Biometricheskaja identifikacija rukopisnykh obrazov s ispolzovaniem korreljacionnogo analoga pravila Bajjesa // Voprosy zashhity informacii / FGUP «VIMI». Moskva. 2015. № 3. S. 48-54.
  21. Ivanov A.I., Lozhnikov P.S., Kachajjkin E.I. Identifikacija podlinnosti rukopisnykh avtografov setjami Bajjesa-KHehmminga i setjami kvadratichnykh form // Voprosy zashhity informacii. 2015. № 2. S. 28-34.