350 rub
Journal Information-measuring and Control Systems №9 for 2015 г.
Article in number:
Sensorless vector control of permanent magnet synchronous motor with correction of electrical angle calculation errors
Authors:
A.M. Kostygov - Ph.D. (Eng.), Dean of Department of Electrical Engineering, Perm National Research Polytechnic University. E-mail: dekan@etf.pstu.ru D.A. Dadenkov - Senior Lecturer, Perm National Research Polytechnic University. E-mail: dadenkov@mail.ru E.M. Solodkiy - Senior Lecturer, Perm National Research Polytechnic University. E-mail: wsdl00@gmail.com A.M. Shachkov - Student, Perm National Research Polytechnic University. E-mail: ajiexa_@mail.ru
Abstract:
The article describes implementation method of sensor less speed and angle estimation of rotor in permanent magnet synchronous motor based on rotating coordinate system is also presented.It is known that the problem of sensor less motor control associated with the choice of management techniques and can be solved in differentmethods.When using scalar control the rotation angle of the rotor is not evaluated, and therefore the position vector of the rotor flux linkage is unknown, which does not allow to set the motor torque linearly from the active component of the stator current. To solve this problem in sensor less vector control systems use special observers speed in which to calcu-late the speed or angle of rotation used a mathematical model of the engine. In vector control, as a basic method of calculating the elec-trical speed of the rotor can be used a variety of methods. One of them is determining the speed directly from the equations in the statio-nary axes α, β. However, practice this method of estimation speed is associated with limitations due to inaccuracies of the calculation of derivatives and bad spectral pattern of the current. This causes an inaccurate estimation of the speed and error in the calculation of the rotation angle and causesto the malfunction of current regulators. Presented the structure of the current controller allows the use of radically different methods of estimating the speed without using the ma-trix equations, and compensating for the rotation angle in a rotating coordinate system in axes d, q. The advantage of the proposed ap-proach is not to use derivatives for calculating the stator current, and therefore a more accurate determination of the speed and the rota-tion angle. However, analysis of simulation results of control system using only base speed estimation showed insufficient control quality due to accumulation of angle calculation error on speed integrating. Transition process on speed is accompanied by sharp dips and leaps. In practice, this system are not able to be sustained. To solve this problem it is proposed to implement the original method of angle calcula-tion error correction in the speed and angle observer. This method based on the calculation of difference between real (measured) and cal-culated value of phases of stator current vectors in complex form. The block diagram and simulation of sensorless vector control system with speed observer in axes d, q and angle error correction in MexBios Development Studio are shown. Simulation results confirm effec-tiveness of proposed approaches in sensorless control of permanent magnet synchronous motor.
Pages: 27-33
References

 

  1. Braslavskijj I.JA., Zjuzev A.M., Nesterov K.E. Asinkhronnyjj tiristornyjj ehlektroprivod s bezdatchikovym izmeritelem skorosti // EHlektromashinostroenie i ehlektrooborudovanie. 2006. № 66. S. 35-36.
  2. Osipov P.A., Karjakin A.L. Metod izmerenija koordinat asinkhronnogo ehlektrodvigatelja v chastotno reguliruemom ehlektroprivode mekhanizmov karernogo ehkskavatora // EHlektrotekhnika. 2012. № 9. S. 18-21.
  3. Petrochenkov A.B., Romodin A.V., Kychkin A.V. Organizacija informacionno-izmeritelnojj i upravljajushhejj sistemy lokalnojj intellektualnojj ehlektroehnergeticheskojj seti // Informacionno-izmeritelnye i upravljajushhie sistemy. 2014. T. 12, № 9. S. 4-11.
  4. Petrochenkov A.B., Frank T., Romodin A.V., Kychkin A.V.Polunaturnoe modelirovanie aktivno-adaptivnojj ehlektricheskojj seti // EHlektrotekhnika. 2013. № 11. S. 60-63.
  5. Anuchin A.S. Sistemy upravlenija ehlektroprivodov / Uchebnik dlja vuzov. M.: Izd-vo «Izdatelskijj dom MEHI». 2015. 320 s.
  6. Kachachjov JU.N. Vektornoe regulirovanie (zametki praktika). [EHlektronnyjj resurs]. http://www.privodnews.ru/docs/Vec­tor_Kalachev.pdf(data obrashhenija: 20.04.2015).
  7. Dadenkov D.A., Solodkijj E.M., SHachkov A.M. Modelirovanie sistemy vektornogo upravlenija asinkhronnym dvigatelem v pakete Matlab/Simulink // Vestnik Permskogo nacionalnogo issledovatelskogo politekhnicheskogo universiteta. EHlektrotekhnika, informacionnye tekhnologii, sistemy upravlenija. 2014. № 3(11). S. 117-128.
  8. Kostygov A.M., Solodkijj E.M., Dadenkov D.A. Sintez reguljatorov toka i skorosti v sisteme vektornogo upravlenija ventilnym ehlektroprivodom // Fundamentalnye issledovanija. 2014. № 11-7. S. 656-661.
  9. MexBIOS Development Studio? vizualnaja sreda razrabotki i modelirovanija. [EHlektronnyjjresurs]. http://mechatronica-pro.com/ru/catalog/software/ (data obrashhenija: 20.04.2015).
  10. JAglom I.M. Kompleksnye chisla i ikh primenenie v geometrii. M.: Fizmatgiz. 1963. 192 s.