350 rub
Journal Information-measuring and Control Systems №7 for 2015 г.
Article in number:
The synthesis method of diagnosing and accommodation to faults systems for navigation sensors of autonomous underwater vehicles
Authors:
V.F. Filaretov - Dr.Sc. (Eng.), Head of Laboratory of Robotic Systems, Institute of Automation and Control Processes FED RAS; Head of Department of Automation and Control, Far Eastern Federal University (Vladivostok). E-mail: filaretov@inbox.ru A.N. Zhirabok - Dr.Sc. (Eng.), Professor, Head of Department of Automation and Control, Far Eastern Federal University (Vladivostok) A.V. Zuev - Ph.D.(Eng.), Junior Research Scientist, Institute of Automation and Control Processes FED RAS. E-mail: zuev@dvo.ru A.A. Protsenko - Post-graduate Student, Far Eastern Federal University (Vladivostok). E-mail: pro293133@gmail.com
Abstract:
This paper describes synthesis method of diagnostic systems and systems of accommodation to faults in navigation sensors systems for autonomous underwater vehicles (AUV). This method is based on using of diagnostic observers, which are synthesized with using of dynamic model of AUV. For compensation of detected faults, it is proposed to enter the feedback on residuals in each synthesized ob-server. The advantage of offered method is the ability to identify and compensate of faults in several sensors of AUV, but in this case, it is necessary to know the exact parameters of models of AUV. The problem was solved thanks to the synthesized diagnostic monitors feedback signal discrepancy. The results of mathematical simulation confirm the effectiveness of the proposed method.
Pages: 32-40
References

 

  1. Ageev M.D. Avtonomnye podvodnye roboty. Sistemy i tekhnologii. M.: Nauka. 2005. 400 s.
  2. Klyuev V.V., Kondrat-ev Yu.A., Okhotsimsky D.E., Popov E.P., Pryanichnikov V.E., et al. Sensor Systems and Adaptive Industrial Robots / in monograph: Mashinostroenie. 1985. Ch. 3-5. P. 56-172.
  3. Katalinic B., Pryanichnikov V., Ueda K., Cesarec P., Kettler R., et al. Bionic Assembly System: hybrid control structure, working scenario and scheduling // Proceedings of 9th National Congress on Theoretical and Applied Mechanics. Brussels. 2012. P. 101-108.
  4. Andreev V.P., Kirsanov K.B., Kostin A.V., Kuvshinov S.V., Marzanov JU.S., Pankratov D.A., Prysev E.A., Prjanichnikov V.E., Rybak T.N., KHarin K.V., SHipovalov E.A. Mobilnye tekhnologicheskie roboty i trenazhery: integracionnoe programmnoe obespechenie gruppovogo vzaimodejjstvija // Informacionno-izmeritelnye i upravljajushhie sistemy (Intellektualnye adaptivnye roboty. 2013. T. 8. № 1-2). 2013. T. 11. № 4. S. 74-79.
  5. Blanke M., Kinnaert M., Lunze J., Staroswiecki M. Diagnosis and Fault Tolerant Control. Springer-Verlag. 2003. P. 571.
  6. ZHirabok A.N., Pisarec A.M. Diagnostirovanie datchikov podvodnykh robotov // Mekhatronika, avtomatizacija, upravlenie. 2004. № 9. S. 15-21.
  7. Alessandri A., Caccia M., Verruggio G. A Model-Based Approach to Fault Diagnosis in Unmanned Underwater Vehicles // Proceedings of Oceans. 1998. Nice. France. P. 825-829.
  8. Antonelli G.A Survey of Fault Detection/Tolerance Strategies for AUVs and ROVs // Springer Tracts in Advanced Robotics. 2003. V.1. P. 109-127.
  9. Alessandri A., Hawkinson T., Healey A.J., Veruggio G. Robust Model-Based Fault Diagnosis for Unmanned Underwater Vehicles Using Sliding Mode Observers // Proc. Int. Symposium Unmanned Untethered Submersible Technology. 1999. P.1-8.
  10. Filaretov V.F., Zuev A.V., ZHirabok A.N., Procenko A.A., SubudhiB. Metod sinteza sistem nepreryvnojj akkomodacii k defektam v navigacionno-pilotazhnykh datchikakh avtonomnykh podvodnykh robotov // Mekhatronika, avtomatizacija, upravlenie. 2015. № 4. S. 282-288.
  11. Filaretov V., Zhirabok A., Zuev A., Protcenko A. The new approach for synthesis of diagnostic system for navigation sensors of underwater vehicles // Procedia Engineering. 2014. № 69. P. 822-829. DOI 10.1016/j.proeng.2014.03.059.
  12. Hakiki K., Mazari B., Liaizid A., Djaber S. Fault Reconstruction Using Sliding Mode Observers // American Journal of Applied Sciences. 2006. P. 1669-1674.
  13. Weng Z., Patton R. Cui P. Active fault-tolerant control of a double inverted pendulum // Proc. IFAC Symp. Safeprocess-2006. Beijing. PR China, 2006. P. 1591-1596.
  14. Staroswiecki M. Fault tolerant control: the pseudo inverse method revisited // Proc. 16th IFAC Congr. Prague. Czech. Republic. 2005.
  15. Jang B., Staroswiecki M., Cocquempot V. Active fault tolerant control for a class nonlinear systems // Proc. IFAC Symp. Safeprocess-03. Washington, USA. 2003. P. 127-132.
  16. ZHirabok A.N., SHumskijj A.E., Bobko E.JU. Metod otkazoustojjchivogo upravlenija nelinejjnymi di-namicheskimi sistemami: logiko-dinamicheskijj podkhod // Problemy upravlenija. 2010. № 2. S. 11-18.
  17. Filaretov V.F., Lebedev A.V., JUkhimec D.A. Ustrojjstva i sistemy upravlenija podvodnykh robotov. M.: Nauka. 2005. 270 c.
  18. Filaretov V.F., ZHirabok A.N., Zuev A.V., Procenko A.A. Razrabotka metoda sinteza sistemy akkomodacii k defektam v ehlektroprivodakh manipuljacionnykh robotov // Informacionno-izmeritelnye i upravljajushhie sistemy. 2013. T. 11. № 4. C. 26-33.
  19. ZHirabok A.N., Usolcev S.A. Linejjnye metody pri diagnostirovanii nelinejjnykh sistem // Avtomatika i telemekhanika. 2000. № 7. S. 149-159.
  20. Zuev A.V., Filaretov V., Zhirabok A., Shumsky A., Boreiko A. The development of the advanced diagnostic system for autonomous underwater vehicles // The 24th Asian-Pacific Technical Exchange and Advisory Meeting on Marine Structures. Vladivostok, Russia. 2010. P. 247-252.