350 rub
Journal Information-measuring and Control Systems №3 for 2015 г.
Article in number:
Space-time signal processing in multi-static forward scatter radar
Authors:
A.G. Ryundyuk - Dr.Sc. (Eng.), Head of Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. E-mail: rs@nntu.nnov.ru A.V. Myakin-kov - Dr.Sc. (Eng.), Professor, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. E-mail: redvillage@mail.ru D.M. Smirnova - Ph.D. (Eng.), Associate Professor, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. E-mail: smirnovadarya@gmail.com R.S. Fadeev - Post-graduate Student, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. E-mail: fr_201190@mail.ru
Abstract:
Forward-scatter radars allow effective detection and tracking of low-observable targets. The use of FSR provides the inde-pendence of the forward scatter radar cross section (FS RCS) of a target from the radio absorbing cover. The coverage of bistatic FSR is relatively narrow. The traditional way to increase the coverage of FSR is to use multi-static configuration which provides also the improvement of spatial resolution and tracking accuracy. Multi-static FSR consisting of several transmitters and one multi-channel receiver was considered. In this system, transmitters work independently and radiate multi-frequency signals. A set of transmitters is considered as a thinned transmitting antenna array. The multi-frequency mode of radiation provides suppression of grating lobes, while the original phasing procedure allows compensation of phase shifts due to the random placement of transmitters. Detection and tracking of low-observable aerial targets could be performed by using the proposed system. To solve this problem, transmitters of FSR could be placed onboard of the aerial positions. In this situation the use of UAVs as a moving transmit positions becomes the attractive solution for different applications: area monitoring and border patrol. Placement of transmit positions onboard of UAVs provides fast deployment of the system in those region where it is currently needed. In addition, this configuration allows the increase of vertical size of radar coverage in comparison to the case of ground-based system. This paper deals with the investigation of specific features of space-time processing (SPT) algorithms in multi-static FSR with airborne transmit positions. It is shown that specific SPT provides forming of radiation pattern of thinned transmitting array in the presence of dynamically changing external factors leading to the destabilization of transmit array geometry. In conditions of extern impact like random wind gusts the stability of radiation pattern could be provided with required accuracy using periodical refreshment of GPS coordinates of transmitters. It is seen from the results of mathematical modeling that refreshment of GPS coordinates once per 0.1 s provides the appropriate target tracking accuracy close to the accuracy corresponding to the static positions.
Pages: 49-55
References

 

  1. Blyakhman A.B., Runova I.A. Forward Scattering Radiolocation Bistatic RCS and Target Detection // Proc. of the 1999 IEEE Radar Conference. Waltham, USA. 1999. P. 203-208.
  2. Mjakinkov A.V., Smirnova D.M. Obnaruzhenie nazemnykh celejj v mnogopozicionnojj prosvetnojj radiolokacionnojj sisteme // Izvestija vysshikh uchebnykh zavedenijj Rossii. Radioehlektronika. 2010. Vyp. 5. S. 47-55.
  3. Bljakhman A.B., Mjakinkov A.V., Ryndyk A.G. Izmerenie koordinat celejj v trekhkoordinatnykh bistaticheskikh RLS s obnaruzheniem «na prosvet» // Radiotekhnika i ehlektronika. 2006. № 4. S. 422-427.
  4. Gashinova M., Daniel L., Cherniakov M. Multistatic Forward Scatter Radar for accurate motion parameters estimation of low-observable targets // Proc. of  International Radar Conference. Lille, France. 2014. 6 p.
  5. Nezlin D.V., Kostylev V.I., Blyakhman A.B., Ryndyk A.G. and Myakinkov A.V. Bistatic radar: principles and practice / Edited by M. Cherniakov. UK: John Wiley & Sons Ltd. 2007. 504 p.
  6. Myakinkov A.V., Sizov, Cherniakov V.M., et. al. Easily Deployable, Multi-Functional Radar Network // Proc. of 5th EMRS DTC Technical Conference. Edinburgh, UK. 24-25 June 2008.
  7. Smirnova D.M. Opredelenie koordinat nazemnykh celejj v mnogopozicionnojj prosvetnojj radiolokacionnojj sisteme // Izvestija vysshikh uchebnykh zavedenijj Rossii // Radioehlektronika. 2011. Vyp. 5. S. 72-78.
  8. Ryndyk A.G., Myakinkov A.V., Smirnova D.M., Burakov S.V. Algorithm of Space-Time Processing in Multi-static Forward Scattering Radar // Proc. Of Int. Radar Symposium IRS 2013. Dresden, Germany. 2013. P. 614-619.
  9. Myakinkov A.V., Blyakhman A.B., Ryndyk A.G., Burov V.N. Detection of unmanned aerial vehicles via multi-static forward scattering radar with airborne transmit positions // Proceedings of International Conference "International Radar 2014". Lille, France. 13-17 October 2014.
  10. Bljakhman A.B., Mjakinkov A.V., Ogurcov A.G., Ryndyk A.G. Opredelenie koordinat celejj v prosvetnykh radiolokacionnykh sistemakh s podvizhnymi pozicijami // Radiotekhnika i ehlektronika. 2008. T. 53. № 3. S. 327-332.
  11. Arzhanikov N.S., Sadekova G.S. Aehrodinamika letatelnykh apparatov. M.: Vysshaja shkola. 1983. 359 s.