350 rub
Journal Information-measuring and Control Systems №6 for 2014 г.
Article in number:
Programme library for digital signal processing in electrogastroenterography
Authors:
A. I. Popov - Ph.D. (Eng.), Associate Professor, Department of Applied Informatics and Informatization of Education, NaRFU, Arkhangelsk, Russia. E-mail: aleneus@gmail.com
A. A. Tyulpin - Student, NaRFU, Arkhangelsk, Russia. E-mail: alekseytyulpin@gmail.com
A. V. Rudalev - Software Engineer, Applied Mathematics department, NaRFU, Arkhangelsk, Russia. E-mail: a.rudalev@narfu.ru
Abstract:
The problems of digital signal processing in electrogastroenterography are discussed. General information about electro-gastroenterography is given. Its current state is analysed. Prospectives of application of electrogastroenterography: rural areas and postoperative monitoring are shown. It is proposed that investigations of digital signal processing level give a significant potential for the development of this method. Within hardware-software solutions. It is shown that such investigations face serious difficulties within widespread hardware and software solutions. Information about the diagnostic parameters of electrogastroenterograms is given. The parameters used in widespread equipment Gastroscan-GEM are emphasized. Features of oraginization of process of working with data of electrogastroenterography in clinical practice and in research are analyzed. Need for tools that implements open and extendable levels of data processing is shown. Software tool (programme library PyEGEG) developed by authors is briefly described. This tool allows to carry out routine analysis of electrogastroenterograms using an extensible set of computational procedures. Typical scenario of using the library is shown. Examples of investigation of stomach motility arrhythmicity using these tools on 43 electrogastroenterograms of normal subjects are given.
Pages: 40-45
References

  1. Hunter J.D. Matplotlib: A 2D graphics environment //Computing in Science & Engineering. 2007. V. 9. №. 3. P. 90-95.
  2. Jones E., Oliphant T., Peterson P. SciPy: Open source scientific tools for Python //http://www. scipy. org/. 2001.
  3. Oliphant T.E. A Guide to NumPy. USA: Trelgol Publishing. 2006. T. 1. S. 85.
  4. Perez F., Granger B.E. IPython: a system for interactive scientific computing // Computing in Science & Engineering. 2007. V. 9. № 3. S. 21-29.
  5. PyEgeg-s documentation. http://dsplab.narfu.ru/software/
  6. Riezzo G., et al. Comparison of gastric electrical activity and gastric emptying in healthy and dyspeptic children // Digestive diseases and sciences. 2000. T. 45. № 3. S. 517-524.
  7. Yin J., Chen J.D.Z. Electrogastrography: Methodology, Validation and Applications // Journal of Neurogastroenterology and Motility. 2013. T. 19. № 1. S. 5.
  8. Vavrinchuk S.A., Kosenko P.M. Sistemnyy analiz pokazateley perifericheskoy elektrogastroenterografii u bol'nykh s oslozhnennoy yazvennoy bolezn'yu. Khabarovsk: Red.-izd. tsentr IPKSZ. 2012. 189 s.
  9. Gastroenteromonitor GEM-01 ? «Gastroskan-GEM» // Funktsional'naya gastroenterologiya URL: http://www.gastroscan.ru/gastroscan/-gem/
  10. Svin'in S.F., Popov A.I., Rudalyev A.V. Veyvlet-analiz i informatsionnye tekhnologii v zadachakh obrabotki elektrogastroenterogramm // Trudy SPIIRAN. 2013. № 27. S. 129-143.
  11. Elektrogastroenterografiya: issledovanie elektricheskoy aktivnosti zheludka i kishechnika // Funktsional'naya gastroenterologiya URL: http://www.gastroscan.ru/physician/egg/