350 rub
Journal Information-measuring and Control Systems №5 for 2014 г.
Article in number:
Some properties of the simulation of adaptive neuro-fuzzy systems based on a simplified fuzzy inference
Authors:
M. V. Bobyr - Dr.Sc. (Eng.), Associate Professor, South-West State University (Kursk). E-mail: fregat_mn@rambler.ru
S. G. Emelyanov - Dr.Sc. (Eng.), Professor, South-West State University (Kursk). E-mail: rector@swsu.ru
N. A. Milostnaya - Ph.D. (Eng.), South-West State University (Kursk). E-mail: nat_mil@mail.ru
Abstract:
For information and measuring and controlling systems decision making under uncertainty is the actual problem. One of the most promising theories to take account of incomplete knowledge is fuzzy logic. It is based algorithms are fuzzy inference based models Mamdani and Sugeno. While a simplified algorithm fuzzy inference from researchers almost no interest. Unfortunately, the traditional fuzzy inference algorithms have several disadvantages, which include the curse of dimensionality, the presence of empty making, etc., which reduce the emergence of virtually any control system. One possible way to improve the performance of traditional algorithms, fuzzy logic inference are soft computing, allowing to compensate not only the above-mentioned shortcomings, but also provide additive system. In connection with this article were analyzed simulation results of ANFIS (Adaptive Neuro-Fuzzy Inference System) operates on the basis of a simplified algorithm for the implementation of soft and hard arithmetic operations. Studies have shown that in some cases it is advisable to use the ANFIS based on a simplified algorithm with hard formulas.
Pages: 4-12
References

  1. Palani S., Natarajan U., Chellamalai M. On-line prediction of micro-turning multi-response variables by machine vision system using adaptive neuro-fuzzy inference system (ANFIS) // Machine Vision and Applications. 2013. № 24. P. 19-32.
  2. Titov V.S., Bobyr' M.V., Milostnaya N.A. Avtomaticheskaya kompensatsiya teplovykh deformatsiy shpindel'nykh uzlov pretsizionnogo oborudovaniya s ChPU // Promyshlennye ASU i kontrollery. 2006. № 11. S. 31-35.
  3. Kumanan S., Jesuthanam C.P., Ashok Kumar R. Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness // The international journal of advanced manufacturing technology. 2008. № 35. P. 778-788.
  4. Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control // IYeYeYe Trans, on SMC. 1985. V.15. № 1. P. 116-132.
  5. Chavoshi S. Z. Tool flank wear prediction in CNC turning of 7075 AL alloy SiC composite // Production engineering. 2011. № 5. P. 37-47.
  6. Bobyr' M. V., Titov V. S., Akul'shin G. Yu. Modelirovanie nechetko-logicheskikh sistem upravleniya na osnove myagkikh arifmeticheskikh operatsiy // Vestnik komp'yuternykh i informatsionnykh tekhnologiy. 2013. № 3. S. 29-35.
  7. Yemel'yanov S. G., Titov V. S., Bobyr' M. V. Avtomatizirovannye nechetko-logicheskie sistemy upravleniya. M.: Infra-M, 2011. 176 s.
  8. Bobyr' M. V. Metody postroeniya funktsiy prinadlezhnostey dlya nechetkikh baz znaniy // Promyshlennye ASU i kontrollery. 2011. № 2. S. 27-33.
  9. Yemel'yanov S. G., Bobyr' M. V., Antsiferov A. V. Algoritm samoobucheniya adaptivnykh neyro-nechetkikh sistem na osnove myagkikh vychisleniy // Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2013. T. 11. № 8. S. 3-9.
  10. Bobyr' M. V. Modifitsirovannyy algoritm nechetko-logicheskogo vyvoda v zadachakh upravleniya oborudovaniem s ChPU // Mekhatronika, avtomatizatsiya, upravlenie. 2011. № 4. S. 26-32.
  11. Bobyr' M. V., Titov V. S., Chervyakov L. M. Adaptatsiya slozhnykh sistem upravleniya s uchetom prognozirovaniya vozmozhnykh sostoyaniy // Avtomatizatsiya i sovremennye tekhnologii. 2012. № 5 S. 3-10.
  12. Bobyr' M. V., Titov V. S. Intellektual'naya sistema upravleniya temperaturnymi deformatsiyami pri rezanii // Avtomatizatsiya i sovremennye tekhnologii. 2011. № 5. S. 3-7.
  13. Titov V. S., Milostnaya N. A., Bobyr' M. V., Globin P. V. Avtomatizirovannaya sistema upravleniya effektivnoy moshchnost'yu pri shlifovanii // Izv. Yugo-Zap. gos. un-ta. 2012. № 2-1. S. 8-12.
  14. Titov V. S., Bobyr' M. V., Milostnaya N. A. Sistema lazernogo kontrolya obrabotki detaley v real'nom vremeni // Promyshlennye ASU i kontrollery. 2005. № 11. S. 21-24.
  15. Bobyr' M. V. Diagnostika oborudovaniya s ChPU metodami nechetkoy logiki // Promyshlennye ASU i kontrollery. 2010. № 1. S. 18-20.