350 rub
Journal Information-measuring and Control Systems №1 for 2013 г.
Article in number:
Regularization of ill-posed problems of predictive control in energy saving technologies
Authors:
L.S. Kazarinov, T.А. Barbasova
Abstract:
Predictive control is especially effective in resource saving technologies. Using predictive control makes possible to solve problems of energy consuming minimization in real time. The positive feature of predictive control is that energy effective decisions are worked out with anticipation before the resources will be used.
Рredictive control assumes the current identification of response characteristics of a technological object, which setting in real conditions is generally ill-posed. Maintenance of technological objects is implemented according technological rules which generally consist in stabilizing of technological parameters. Hence current data may not contain the necessary information about process parameters. That leads to incorrectly set predictive control problems.
A regularization method for ill-posed predictive control problems is proposed. The method is based on a current minimization of energy supply norms in processes.
Pages: 5-15
References
- Qin S. J., Badgwell T. A. (2003). A survey of industrial model predictive control technology. Control Engineering Practice. V. 11. Р. 733 - 764.
- Пропой А. И., Цыпкин Я. З.Об адаптивном синтезе оптимальных систем. Доклады АН СССР. 1967.Т. 175.№ 6.
- Lee E. B. & Markus L. (1967) Foundations of Оptimal Control Theory. New York: Wiley.
- Цыпкин Я. З. Адаптация и обучение в автоматических системах. М.: Наука. 1968. 400 с.
- Richalet J. B., Rault A., Testud J. L., & Papon J. (1976). Algorithmic control of industrial processes. In Proceedings of the 4th IFAC symposium on identification and system parameter estimation. Р.1119-1167.
- Richalet J. B., Rault A., Testud J. L. & Papon J. (1978). Model predictive heuristic control: Applications to industrial processes. Automatica. V. 14. Р. 413-428.
- Richalet J. (1993). Industrial applications of model-based control. Automatica. V. 29. Р. 1251-1274.
- Clarke D. W. et al. (1987). Generalized predictive control - Part I & II, Automatica. V. 23. № 2. Р. 137 -160. см. также: Clarke, D. W. et al. (1989). Properties of generalized predictive control, Automatica, V.25. № 6. Р. 859-875.
- Prett D. M. & Garcia C. E. (1988). Fundamental process control. Boston: Butterworths.
- De Keyser, R.M.C., Van de Velde, Ph.G.A. & Dumortier, F.A.G. (1988). A comparative study of self-adaptive long-range predictive control methods. Automatica. V. 24. № 2. Р. 149-163.
- Garcia C. E., Prett D. M. & Morari M. (1989). Model predictive control: Theory and practice-a survey. Automatica. V. 25(3). Р. 335-348.
- Ricker N. L. (1991). Model predictive control: State of the art. In Y. Arkun, W. H. Ray (Eds), Chemical process control-CPC IV, Fourth international conference on chemical process control (Р. 271 -296). Amsterdam: Elsevier.
- Morari M. & Lee J. H. (1991). Model predictive control: The good, the bad, the ugly. In Y. Arkun, W. H. Ray (Eds), Chemical process control-CPC IV. Fourth international conference on chemical process control (Р. 419 -444). Amsterdam: Elsevier.
- Soeterboek R. (1992). Predictive control: a unified approach. International Series in Systems and Control Engineering. Prentice Hall.
- Muske K. R. & Rawlings J. B. (1993). Model predictive control with linear models. A.I.CH.E. Journal. V.39. № 2.Р. 262-287.
- Rawlings J. B., Meadows E. S. & Muske K. (1993). Nonlinear model predictive control: a tutorial and survey. In Proceedings of IFAC ADCHEV, Japan.
- Mayn D. Q. (1997) Nonlinear model predictive control: An assessment. In J. C. Kantor, C. E. Garcia, & B. Carnahan (Eds), Fifth international conference on chemical process control AICHE and CACHE (Р. 217 -231).
- Lee J. H. & Cooley B. (1997). Recent advances in model predictive control and other related areas. In J. C. Kantor, C. E. Garcia & B. Carnahan (Eds), Fifth international conference on chemical process control AICHE and CACHE (Р. 201 -216).
- Allgower F., Badgwell T. A., Qin S. J., Rawlings J. B. & Wright S. J. (1999). Nonlinear predictive control and moving horizon estimation-an introductory overview. In P. M. Frank (Ed.), Advances in control: highlights of ECC '99. Berlin Springer.
- Mayn D. Q., Rawlings J. B., Rao C. V. & Scokaert P. O. M. (2000). Constrained model predictive control: Stability and optimality, Automatica. V. 36. Р. 789-814.
- Rawlings J. B. (2000). Tutorial overview of model predictive control. IEEE Control Systems Magazin.V.20. Р. 38-52.
- Qin, S. J.,
Badgwell, T. A. (2003). A survey of industrial model predictive control
technology. Control Engineering Practice.
V. 11. Р. 733-764. - Allgower F. & Zheng A. (Eds.) Nonlinear model predictive control, progress in systems and control theory. V. 26. Basel. Boston. Berlin: Birkhauser Verlag.
- Kouvaritakis B. & CannonM. (Eds.) (2001). Nonlineary predictive control, theory and practice. London: The IEE.
- Maciejowski J. M. (2002) Predictive control with constraints. Englewood Cliffs, NJ: Prentice Hall.
- Казаринов Л. С. Системные исследования и управление / Когнитивный подход. Научно-метод. пособие. Челябинск: ИздательскийцентрЮУрГУ. ИздательТ. Лурье. 2011. 524 с.