350 rub
Journal Information-measuring and Control Systems №9 for 2010 г.
Article in number:
Earth rotation effect on determination of user coordinates and velocity in global navigation satellite systems
Authors:
A. A. Povalyaev
Abstract:
Short propagation time in ground-based navigation systems allow to neglect Earth turning at propagation time. In global navigation satellite systems (GLONASS, GPS and so on) that time rises steeply. As a consequence that neglecting may bring to shifts in navigation receiver coordinates up to several tens meters and to shifts of its velocity vector components up to several cm/c. Allowable errors in up-to-date global navigation satellite systems greatly less then mentioned coordinate shifts and comparable with velocity vector component shifts. It is cause the necessity to develop Earth rotation effect methods under pseudorange and pseudodoppler measurements processing in global navigation satellite systems. In the paper for pseudorange processing it is consider two possible algorithms of Earth rotation effect. Both algorithms use iterative nature of nonlinear equation system solution search, which lies in the basis of pseudorage processing. These algorithms differ each other only computing peculiarities. In the case of pseudodoppler processing it is found in the paper simple formula for Earth rotation effect correction.
Pages: 50-59
References
  1. Interface Control Document: NAVSTAR GPS Space Segment / Navigation User Interfaces (ICD-GPS-200). RockwellInt. Corp., 1987
  2. Поддубная М. С., Понкратов В. В., Селина А. Ю. Навигационное сообщение в спутниковой системе NAVSTAR // Зарубежная радиоэлектроника. 1991. № 4. С. 22-42.
  3. Глобальная навигационная спутниковая система. Интерфейсный контрольный документ (редакция пятая). М. КНИЦ. http://www.rssi.ru/SFCSIC/SFCSIC_main.html
  4. Поваляев А. А. Спутниковые радионавигационные системы: время, показания часов, формирование измерений и определение относительных координат. М.: Радиотехника. 2008.
  5. Бронштейн И. Н., Семендяев К. А. Справочник по математике. М.: Наука. 1964.
  6. Самарский А. А., Гулин А. В. Численные методы. М.: Наука. 1989.