350 rub
Journal Information-measuring and Control Systems №10 for 2009 г.
Article in number:
Models of the analysis and correction of data in problems of management of еcology -economic processes
Authors:
V. A. Gorelik, T. V. Zolotova
Abstract:
In article questions of correction of given not own tasks of management in which restrictions on operated parameters are not joint are considered. As a substantial example the industrial model in view of ecological requirements on a level of pollution of a surrounding environment is considered. It is shown, that occurrence of additional restrictions on a level of pollution in a task of industrial planning can lead to result, for example, mismatching requirements to a planned target for the concrete enterprise. In this connection new statements of tasks of the minimal correction in which one data, influence on other data named by tasks of connected correction are offered. It is supposed, that the matrix of factors of pollution is connected with a technological matrix linear dependence. Tasks of the minimal correction only a technological matrix or a technological matrix and a vector of volumes of resources on a minimum of norm , and also threshold value of criterion of efficiency are formulated. One of the presented tasks of correction of data are shown to a task of linear programming, and others by a method of division of a piece - to sequence tasks of linear programming. In article examples of the decision of tasks of correction with application of applied software Mathcad are presented. For the decision of tasks of linear programming in Mathcad environment functions Maximize and Minimize are used.
Pages: 46-55
References
  1. Горелик В. А. Матричная коррекция задачи линейного программирования с несовместной системой ограничений // Журн. вычисл. матем. и матем. физ. 2001. Т. 41. № 11. С. 1607-1705.
  2. Горелик В. А., Ерохин В. И., Печенкин Р. В. Численные методы коррекции несобственных задач линейного программирования и структурных систем уравнений. М.: ВЦ РАН. 2006.
  3. Горелик В. А., Кондратьева В. А. Параметрическое программирование и несобственные задачи линейной оптимизации // Моделирование, декомпозиция и оптимизация сложных динамических процессов. М.: ВЦ РАН. 1999. С. 57-82.
  4. Еремин И. И., Мазуров В. Д., Астафьев Н. Н.Несобственные задачи линейного и выпуклого программирования. М.: Наука. 1983.
  5. Москаленко А. П. Экономика природопользования и охраны окружающей среды: Учебное пособие. Москва: ИКЦ «МарТ», Ростов-на-Дону: Издательский центр «МарТ». 2003.
  6. Фролов В. Н., Ватолин А. А. Анализ противоречивых ситуаций в задачах текущего планирования производства // В кн.: Противоречивые модели оптимизации. Свердловск: ИММ. УНЦАНСССР. 1987. С. 79-92.