A.V. Solovyev1
1 Federal Research Center «Computer Science and Control» of the Russian Academy of Sciences (Moscow, Russia)
1 soloviev@isa.ru
Given the geographical remoteness of economic entities and decision-making centers, it is especially important to ensure strict data consistency across all nodes of a distributed economic management system to improve decision-making efficiency and maintain up-to-date information on the state of production processes at any given time. In this regard, the task of not only storing large volumes of data but also ensuring effective control over changes to this data, coordinating data versions, and timely updating of data across all nodes of the distributed economic management system becomes critical.
The aim of this study is to examine data storage structures designed to support and manage multiversioning in distributed DBMSs to determine the most efficient in terms of data access time.
This article examines and analyzes data storage structures designed to support and manage multiversioning in distributed DBMSs. The advantage in data access speed is demonstrated when using LSM-tree structures. The developed efficient data storage structures for supporting multiversion in distributed DBMSs, as data management systems (databases) containing data on production processes, which in the context of digitalization are becoming key factors of production, make it possible to solve the critical problem of this study.
Solovyev A.V. Storage structures to support multiversion of data in distributed databases. Highly Available Systems. 2025. V. 21.
№ 4. P. 18−27. DOI: https://doi.org/10.18127/j20729472-202504-02 (in Russian)
- Zhang Y. Digital Twin. Architectures, Networks, and Applications. 2024. 126 p. ISBN: 978-3-031-51818-8. DOI: https://doi.org/10.1007/ 978-3-031-51819-5.
- Knuth D. Sorting and Searching. The Art of Computer Programming. V. 3 (Second ed.). Addison-Wesley. ISBN 0-201-89685-0. Section 6.2.4: Multiway Trees. 1998. P. 481–491.
- Zhang W., Xu Y., Li Y., Li D. Improving Write Performance of LSMT-Based Key-Value Store. 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS). 2016. P. 553–560. doi:10.1109/ICPADS.2016.0079. ISBN 978-1-5090-4457-3.
- Ahuja A., Jain V., Saini D. Measuring Clock Reliability in Cloud Virtual Machines. In: Al-Turjman, F. (eds) Real-Time Intelligence for Heterogeneous Networks. Springer, Cham. 2021. https://doi.org/10.1007/978-3-030-75614-7_6.
- Zennou R., Biswas R., Bouajjani A. et al. Checking Causal Consistency of Distributed Databases. Computing 104. 2022. P. 2181–2201.
- Storage Layer: Cockroach Labs. URL: https://www.cockroachlabs.com/docs/stable/architecture/storage-layer (Access data: 19.09.2025).
- Mihalcea V. YugabyteDB Architecture. 2023. URL: https://vladmihalcea.com/yugabytedb-architecture/. Published: 24.03.2023.
- DocDB storage layer: YugabyteDB. URL: https://docs.yugabyte.com/preview/architecture/docdb/ (Access data: 19.09.2025).
- RocksDB | A persistent key-value store: RocksDB. URL: https://rocksdb.org/ (Access data: 19.09.2025).
- LSM tree and Sorted string tables: YugabyteDB. URL: https://docs.yugabyte.com/preview/architecture/docdb/lsm-sst/ (дата обращения 19.09.2025).
- Raft vs. RocksDB WAL logs: YugabyteDB. URL: https://docs.yugabyte.com/preview/architecture/docdb/performance/#raft-vs-rocksdb-wal-logs (Access data: 19.09.2025).
- YDB review: YDB. URL: https://ydb.tech/docs/ru/concepts/ (Access data: 17.09.2025).
- Data model and schema: YDB. URL: https://ydb.tech/docs/ru/concepts/datamodel/ (Access data: 17.09.2025).
- Disk subsystem of the cluster aka YDB BlobStorage: YDB. URL: https://ydb.tech/docs/ru/concepts/cluster/distributed_storage (Access data: 17.09.2025).
- Multi-Version Concurrency Control (MVCC): YDB. URL: https://ydb.tech/docs/ru/concepts/mvcc (Access data: 19.09.2025).
- Performance comparison YDB, CockroachDB and YugabyteDB on benchmark YCSB: habr. URL: https://habr.com/ru/companies/ydb/ articles/740560/. Published: 08.06.2023.
- Bhanawat Hemant, Agarwal Sonal. TPC-C Benchmark: Scaling YugabyteDB to 100,000 Warehouses: YugabyteDB. URL: https://www.yugabyte.com/blog/tpc-c-benchmark-100000-warehouses-yugabytedb/. Published: 11.02.2022.
- YDB introduces TPC-C: Revealing the performance of our distributed transactions: habr. URL: https://habr.com/ru/companies/ ydb/articles/763938/. Published: 27.09.2023.
- Swoyer S. Meet TPCx-BB – A Benchmark for Assessing Big Data Performance: tdwi. URL: https://tdwi.org/articles/2016/06/28/tpcx-bb-big-data-benchmark.aspx (Access data: 19.09.2025).
- Feifei Li. Cloud-Native Database Systems at Alibaba: Opportunities and Challenges. Proceedings of the VLDB Endowment, 12(12). 2019. P. 2263–2272. DOI: https://doi.org/10.14778/3352063.3352141.
- Evolving our self-hosted offering and license model: Cockroach Labs. URL: https://www.cockroachlabs.com/blog/enterprise-license-announcement/. Published: 15.08.2024.
- YugabyteDB Powers the Global Cache of a Top Five US Bank’s Business-Critical Payment App: YugabyteDB. URL: https://www.yugabyte.com/ success-stories/bank-bill-pay-app/ (Access data: 14.03.2025).
- Soto Christiane. US-Based Bank Scales Data Platform for Billions of Real-Time Customer Interactions: YugabyteDB. URL: https://www.yugabyte.com/blog/bank-scales-data-platform/. Published: 24.10.2023.
- Wu G., Chen Z., Dang J. Big Data Enabled Computing. In: Intelligent Bridge Maintenance and Management. Springer Tracts in Civil Engineering. Springer, Singapore. 2024. https://doi.org/10.1007/978-981-97-3827-4_5.

