R.Yu. Esikov1, N.A. Ryndin2
1 Federal Research Center «Computer Science and Control» of the Russian Academy of Sciences (Moscow, Russia)
2 Voronezh State Technical University (Voronezh, Russia)
1 vhiteroman@gmail.com, 2 nikitaryndin@gmail.com
The paper presents an approach to managing the organizational system of an agro-industrial enterprise based on modeling and optimization of a crop rotation plan, which is a variable sequence of activities of enterprise employees to achieve maximum profit while observing all agronomic and technological restrictions, taking into account extreme weather conditions and other destabilizing factors. The basis for crop rotation management is a system of coupled linear programming models. To form these models, statistical data on crop yields are used, which are processed using machine learning methods, as well as templates for technological maps for growing alternative varieties of crops, available in the digital environment of such an organizational system, and economic data on the costs of growing, harvesting and storing them. Optimization models are formed and algorithms for finding the optimal variable sequence of activities are presented using well-known optimization methods.
Esikov R.Yu., Ryndin N.N. Management of organizational system of agrarian enterprise on the basis of optimization of varying
sequence of activities. Highly Available Systems. 2024. V. 20. № 4. P. 44−51. DOI: https://doi.org/ 10.18127/j20729472-202404-05
(in Russian)
- Medennikov V.I., Rajkov A.N. Analiz opy`ta cifrovoj transformacii v mire dlya sel`skogo xozyajstva Rossii. Tendencii razvitiya Internet i cifrovoj e`konomiki. Trudy` III Vseros. c mezhdunar. uchastiem nauchno-prakt. konf. Simferopol`: IP T.V. Zueva. 2020. S. 57–62.
- Medennikov V.I. Sistemny`j analiz cifrovy`x e`kosistem proizvodstvenny`x otraslej na primere APK. Cifrovaya e`konomika. 2021. № 3(15). S. 34–51.
- Niklyaev V.S., Kosinskij V.S., Tkachev V.V., Suchilina A.A. Osnovy` texnologii sel`skoxozyajstvennogo proizvodstva. Zemledelie i rastenievodstvo. M.: By`lina. 2000. 391 c.
- Evtefeev Yu.V., Kazancev G.M. Osnovy` agronomii: uchebnik dlya vuzov. M.: E`ksmo. 2013. 368 s.
- Gerdt V.P., Lassner W. Isomorphism verification for complex and real Life algebras by Grobner basis technique. Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics: Proceedings of the International Workshop Acireale, Catania, Italy, October 27–31. 1992. Springer Netherlands. 1993. R. 245–254.
- Yudin D.B., Gol`shtejn E.G. Linejnoe programmirovanie. Teoriya, metody` i prilozheniya. 2-e izd. M.:URSS. 2012. 424 s.
- CatBoost, XGBoost i vy`razitel`naya sposobnost` reshayushhix derev`ev. https://habr.com/ru/companies/ods/articles/645887/
- Santos L.M.R., Michelon P.R.H., Arenales M.N., Santos R.H.S. Crop rotation scheduling with adjacency constraint. In Annals of Operations Research 190. 2011. Р. 165–180.
- Aliano Filho A., de Oliveira Florentino H., Vaz Pato M. Metaheuristics for a crop rotation problem. International Journal of Metaheuristics. 2014. V. 3. № 3. P. 199–222.
- Schoning J., Richter M.L. AI-based crop rotation for sustainable agriculture worldwide. 2021 IEEE Global Humanitarian Technology Conference (GHTC). IEEE. 2021. R. 142–146.
- Crop Recommendation Dataset. https://www.kaggle.com/datasets/siddharthss/crop-recommendation-dataset
- Bryus P., Bryus E`. Prakticheskaya statistika dlya specialistov Data Science / per. s angl. SPb.: BXV-Peterburg. 2018. 304 s.
- Ry`ndin N.A., Skvorczov Yu.S., Tishukov B.N. Cifrovizaciya upravleniya v organizacionny`x sistemax agropromy`shlenny`x predpriyatij / pod red. A.A. Ry`ndina. Voronezh: Izdatel`sko-poligraficheskij centr «Nauchnaya kniga». 2022. 48 s.
- Ediny`j gosudarstvenny`j reestr pochvenny`x resursov Rossii. https://egrpr.esoil.ru/content/1DB.html