A.P. Karpenko1, I.N. Sinitsyn2
1 Bauman MSTU (Москва, Россия)
2 FRC «Computer Science and Control» of RAS (Moscow, Russia)
Currently, in the problems of information, infocommunication systems and group robotics, swarm algorithms are widely used to ensure the construction of highly reliable fault-tolerant systems. Swarm algorithms belong to the class of bioinspired algorithms based on swarm intelligence (Swarm Intelligence Based Algorithms). A very large number of such algorithms are known, and their modifications and new algorithms continue to appear. There is no unified methodological basis for the synthesis of swarm algorithms.
The purpose of the work is as follows: to develop the foundations of the theory of swarm intelligence, which is the terminological and methodological basis for the synthesis and comparative study of the effectiveness of swarm algorithms.
We present the author's classification and formalization of the main entities of swarm algorithms, such as an individual, a population, a multipopulation, and a subpopulation; metric of the proximity of individuals and populations of individuals, operator, etc., as well as the classification of typical structures of swarm algorithms. The presentation is carried out in terms of systems theory: we distinguish between deterministic and stochastic, stationary and dynamic (software, adaptive and program-adaptive) entities.
The results obtained in the work can be used in the synthesis of CALS-technologies and decentralized automatic control systems for a group of robots operating in extreme conditions. Basic design aspects of swarm algorithms are presented.
Karpenko A.P., Sinitsyn I.N. Swarm Intelligence and Aplications in Highly Available Systems. Highly Available Systems. 2022. V. 18.
№ 4. P. 44−55. DOI: https://doi.org/ 10.18127/j20729472-202204-04 (in Russian)
- Karpenko A.P. Sovremennye algoritmy poiskovoj optimizacii. Algoritmy, vdohnovlennye prirodoj. M.: Izdatel'stvo MGTU im. N.E. Baumana, 2014. 446 s.
- Karpenko A.P., Sinicyn I.N. Roevoj intellekt i ego primeneniya v sistemah vysokoj dostupnosti. Sistemy vysokoj dostupnosti. 2022. T.18. № 4 (v pechati).
- Bo Xing, Wen-Jing Gao. Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. Springer Cham Heidelberg New York Dordrecht London. 451 P.
- Ashraf Darwish. Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications. Future Computing and Informatics Journal. 2018. V. 3. P. 231–246.
- Gladkov L. A., Kurejchik V. V, Kurejchik V. M. i dr. Bioinspirirovannye metody v optimizacii: monografiya. M.: Fizmatlit. 2009. S. 384.
- Rodzin S.I., Skobcov Yu.A., El'-Hatib S.A. Bioevristiki: teoriya, algoritmy i prilozheniya: monografiya. CHeboksary: ID «Sreda». 2019. 224 s.
- Panteleev A.V., Metlickaya D.V., Aleshina E.A. Metody global'noj optimizacii: Metaevristicheskie strategii i algoritmy. M.: Vuzovskaya kniga. 2013. 244 s.
- Brownlee Jason. Clever Algorithms: Nature-Inspired Programming Recipes. 2011. 441 p. (https://github.com/clever-algorithms/CleverAlgorithms).
- Engelbrecht Andries P. Computational Intelligence. An Introduction: John Wiley & Sons Ltd, England, 2007. 597 p.
- Evolutionary Computation 1. Basic Algorithms and Operators. Edited by Thomas B¨ack, David B Fogel and Zbigniew Michalewicz: Institute of physics publishing Bristol and Philadelphia. 2000. 339 p.
- Evolutionary Computation 2. Advanced Algorithms and Operators. Edited by Thomas Back, David B Fogel and Zbigniew Michalewicz: Institute of physics publishing Bristol and Philadelphia, 2000. 270 P.
- Glover F., Kochenberger G.A. Handbook of metaheuristics. Springer, 2010. 648 p.
- Krishnaveni A., Shankar R., Duraisamy S. A Survey on Nature-Inspired Computing (NIC): Algorithms and Challenges. Global Journal of Computer Science and Technology: Neural & Artificial Intelligence, 2019. Vol. 19. Iss. 3-D. Online ISSN: 0975-4172 & Print ISSN: 0975-4350
- Nazmul Siddique, Hojjat Adeli. Nature Inspired Computing: An Overview and Some Future Directions. Cognitive Computation, 2015. V. 7. P. 706–714.
- Sangita Roy, Samir Biswas, Sheli Sinha Chaudhuri. Nature-Inspired Swarm Intelligence and Its Applications. International Journal of Modern Education and Computer Science (IJMECS). 2014. V.12. P. 55–65.
- Sean Luke. Essentials of Metaheuristics (Second Edition). 2013 (http://cs.gmu.edu/~sean/book/metaheuristics/).
- Xin-She Yang. Nature-Inspired Metaheuristic Algorithms. Second Edition. Luniver Press, United Kingdom, 2010. 115 p.
- Sinicyn I.N., Karpenko A.P., Saharov M.K. Instrumental'noe programmnoe obespechenie analiza i sinteza stohasticheskih sistem vysokoj dostupnosti (XIV). Sistemy vysokoj dostupnosti. 2021. T. 17. № 3. S. 59–68.
- Karpenko A.P. Elementy teorii roevogo intellekta / Pervaya mezhdunar. nauch.-prakt. konf. «Bionika – 60 let. itogi i perspektivy». Moskva, 17–19 dekabrya 2021. S. 52–65.
- Budzko V.I., Mel'nikov D.A., Fomichyov V.M. Osnovy organizacii obespecheniya informacionnoj bezopasnosti i kiberustojchivosti v centralizovannyh informacionno-telekommunikacionnyh sistemah vysokoj dostupnosti. Sistemy vysokoj dostupnosti. 2019. T. 15. № 1. S. 70–77.
- Sinicyn I.N., Shalamov A.S. Lekcii po teorii sistem integrirovannoj logisticheskoj podderzhki. Izd. 2-e, pererab. i dop. M.: Torus Press. 2019. 1072 s.
- Karpenko A.P., Sinitsyn I.N. Bionics and high availability systems. Highly Available Systems. 2022. V. 18. № 2. P. 25−41. DOI: https://doi.org/10.18127/j20729472-202202-02 (in Russian)