K.V. Gusev1, A.S. Leontiev2
1–2 MIREA – Russian Technological University, Moscow 119454, Russia
Objectives. A large number of information systems using distributed data storages necessitates an assessment of the reliability (error-free) indicators of numerical indicators, the development of information control systems, as well as the choice of special technological procedures to increase reliability.
Methods. Methods of boolean functions and approximation models of various classes are used to predict the value of the numerical indicators of the annual periodicity.
Results. A system of indicative Boolean functions and a generalized algorithm have been developed that uses the list structure of Boolean functions, which characterizes a sample of elements of numerical indicators by year, which allows a multivariate analysis of various information control schemes and implement a software package for controlling numerical indicators of an annual periodicity. A system of indicative Boolean functions has been formed, which is the main architectural core in the development of procedures for rough and refined control of numerical indicators. Each numerical indicator is characterized by a sample of its values over several years. For this sample, Boolean variables are determined, based on which a Boolean indicative error function of order P is constructed, which characterizes the order errors in the values of a numerical indicator. For the formation of an indicative feature of rough control of the sampling of values of a numerical indicator, two Boolean variables are introduced that characterize the ratio of the elements of the sampling of a numerical indicator. Based on these variables, the Boolean indicative function of rough control of the numerical indicator is determined. The general indicative feature characterizing the elements of the sample of the numerical indicator is determined by the MET function, which depends on the Boolean functions P and G. At MET = 0, it is considered that the numerical indicator has passed the control for errors of the order and rough control over the reliability of the indicator sample elements. The method of refined control is based on the procedure for choosing and using a forecasting model for calculating new sample elements of a numerical indicator. In this case, a study is carried out on the convexity (concavity) of the approximation function for the possible use of parabolic forecasting models. If the convexity or concavity conditions are not met, linear prediction models are used to calculate new values for the numeric measure.
Gusev K.V., Leontiev A.S. Formation of a system of boolean functions used in assessing the reliability of numerical indicators and choosing models for predicting their values in large-dimensional databases. Highly Available Systems. 2022. V. 18. № 1. P. 62−73. DOI: https://doi. org/ 10.18127/j20729472-202201-06 (in Russian)
- Brojdo V.L., Il'ina O.P. Arhitektura EVM i sistem: Uchebnik dlya vuzov. 2-e izd. SPb.: Piter. 2021. 720 s.
- Leont'ev A.S. Razrabotka analiticheskih metodov, modelej i metodik analiza lokal'nyh vychislitel'nyh setej. Teoreticheskie voprosy programmnogo obespecheniya: Mezhvuzovskij sbornik nauchnyh trudov. M.: MIREA. 2001. C. 70–94.
- Kolesnikov G.S., Leont'ev A.S., Tkachenko V.M. Analiz bazovyh arhitektur lokal'nyh setej pri razrabotke informacionno-vychislitel'nyh sistem //Uchebnoe posobie. M.: MIREA. 2011. 64 s.
- Leont'ev A.S., Rozhickaya P.D. Analiticheskie metody analiza veroyatnostno-vremennyh harakteristik obrabotki informacii v lokal'nyh vychislitel'nyh setyah. Uchebnoe posobie. Elektronnoe izdanie. № gosregistracii 0321803741. M.: FGBOU VO «MIREA-Rossijskij tekhnologicheskij universitet». 2018. 63 s.
- Krinickaya E.V., Leont'ev A.S., Popo R.A. Setevye veroyatnostnye modeli issledovaniya vremennyh harakteristik processov podgotovki informacionno-analiticheskih dokumentov. Teoreticheskie voprosy vychislitel'noj tekhniki i programmnogo obespecheniya: Mezhvuzovskij sb. nauch. trudov. M.: MIREA, 2006. S. 64–72.
- Kolesnikov G.S., Leont'ev A.S., Tkachenko V.M. Analiticheskie metody ocenki zashchishchennosti informacionnyh tekhnologij pri razrabotke mnogourovnevyh sistem zashchity. Uchebnoe posobie. M.: MIREA. 2013. 60 s.
- Leont'ev A.S., Rozhickaya P.D. Analiticheskie metody ocenki veroyatnostnyh pokazatelej zashchishchennosti informacionnyh tekhnologij ot nesankcionirovannogo dostupa. Uchebnoe posobie. Elektronnoe izdanie. № gosregistracii 0321803742. M.: FGBOU VO «MIREA-Rossijskij tekhnologicheskij universitet». 2018. 55 s.
- Klejnrok L. Teoriya massovogo obsluzhivaniya. M.: Mashinostroenie. 1979. 432 s.
- Gnedenko B.V., Kovalenko I.N. Vvedenie v teoriyu massovogo obsluzhivaniya. M.: Nauka. Gl. red. fiz.-mat. lit. 1987. 336 s.
- Marchenkov S.S. Osnovy teorii bulevyh funkcij. M.: Fizmatlit, 2014. 136 s.
- Beskorovajnyj M.M., Kostogryzov A.I., L'vov V.M. Instrumental'no-modeliruyushchij kompleks dlya ocenki kachestva funkcionirovaniya informacionnyh sistem «KOK»: Rukovodstvo sistemnogo analitika. M.: Vooruzhenie. Politika. Konversiya. 2002. 305 s.
- Semenov S.S., Voronov E.M., Poltavskij A.V., Kryanev A.V. Metody i modeli prinyatiya reshenij v zadachah ocenki kachestva i tekhnicheskogo urovnya slozhnosti tekhnicheskih sistem. M.: Lenard. 2019. 516 s.
- Saati T., Kerns K. Analiticheskoe planirovanie. Organizaciya sistem / Per. s angl. M.: Radio i svyaz'. 1991. 224 s.
- Saati T. Prinyatie reshenij. Metod analiza ierarhij / Per. s angl. R.G. Vichnadze. M.: Radio i svyaz'. 1993. 278 s.
- Andrianova E.G., Golovin S.A., Zykov S.V., Les'ko S.A., CHuhalina E.R. Obzor sovremennyh modelej i metodov analiza vremennyh ryadov dinamicheskih processov v social'nyh, ekonomicheskih i sociotekhnicheskih sistemah. Rossijskij tekhnologicheskij zhurnal. 2020. № 8(4). S. 7–45. https://doi.org/10/32362/2500-316X-2020-8-4-7-45
- Nazarov A.A. Podhody k vyboru racional'nyh parametrov elementov sistemy monitoringa chrezvychajnyh situacij tekhnogennogo haraktera pri postroenii kompleksnoj sistemy bezopasnosti zhiznedeyatel'nosti naseleniya. Tekhnosfernaya bezopasnost'. 2021.
№ 1(30). S. 123–132. - Pursiainen C.H. et al. Critical infrastructure resilience index: in book « Risk, Reliability and Safety: Innovating Theory and Practice». CRC Press. 2017. 2183–2189.
- Labaka L., Hermantes J., Sarriegi J.M. Resilience framework for critical infrastructures: An Empirical Study in a Nuclear Plant. Reliability Engineering and System Safety, 141: 92-105, 2015.
- Andrejchikov A.V., Andrejchikova O.N. Sistemnyj analiz i sintez strategicheskih reshenij v innovatike. Modeli mnogokriterial'nogo analiza deyatel'nosti innovacionnyh organizacij. M.: Librokom. 2020. 360 s.
- Petrova O.V. Metodologiya prinyatiya upravlencheskih reshenij: Uchebnoe posobie. M.: Akademiya upravleniya MVD Rossii. 2020. 92 s.
- Tolstova YU.N. Matematicheskoe modelirovanie social'nyh processov v sociologii. Sociologicheskie issledovaniya. 2018. № 9. S. 104–112.
- Orlov YU.N., Fedorov S.L. Generaciya nestacionarnyh traektorij vremennogo ryada na osnove uravnenij Fokkera–Planka. Trudy MFTI. 2016. № 8(2). S. 126–133.
- Mihajlov V.M. Effektivnost' monitoringa kak neobhodimoe uslovie prinyatiya korrektnyh reshenij v sfere tekhnosfernoj bezopasnosti. Rossijskij tekhnologicheskij zhurnal. 2020. № 8(2). S. 23–32. https://doi.org/10.32362/2500-316X-2020-8-2-23-32
- Bronshtejn I.N., Semendyaev K.A. Spravochnik po matematike dlya inzhenerov i uchashchihsya vtuzov. Izd. 13-e, ispr. M.: Nauka. Gl. red. fiz.-mat. lit. 1986. 544 s.
- Gmurman V.E. Teoriya veroyatnostej i matematicheskaya statistika. Uchebnoe posobie dlya vtuzov. Izd. 5-e, pererab. i dop. M.: Vysshaya shkola. 1977. 479 s.
- Korn G., Korn T. Spravochnik po matematike dlya nauchnyh rabotnikov i inzhenerov. M.: Nauka. Gl. red. fiz.-mat. lit. 1973. 832 s.