A.V. Voronin – Ph.D. (Eng.), Associate Professor, Leading Research Scientist,
Federal Research Center «Computer Sciences and Control» of the Russian Academy of Sciences E-mail: aleksey.v.v@mail.ru
The article is devoted to the preparation of decision making in a situational center with the use of geographic information systems (GIS). Geographic information systems are actively used in decision-making systems for the collection, storage, integration, analysis and visualization of geo-and metadata, and are an essential element of analytical and situational centers. GIS is developing in the direction of using client-server technology, specialized extensions for a wide range of tasks, browser-based solutions, open formats and program codes, implementing distributed and intelligent GIS.
The problem of partitioning into classes of spatial (geo) objects on the basis of the mathematical apparatus of non-distinct sets and neural technology is considered.
In the classification, an important element of the solution is the membership function – the domain of definition of operations on fuzzy sets in terms of a fuzzy relation. One, two, three, and four-dimensional spaces are considered as the domain of operations. The membership functions of fuzzy relations on discrete domains of definition are formed by tuples-elements of matrices of two-, three-, four-, and five-dimensional dimensions.
The practical significance of the results lies in the consideration of the geographic information system as an important element in the preparation of decision making, which implements the automation of the processing of geo-and metadata, and also determines the management actions.
- Khemdi A. Glava 14. Teoriya igr i prinyatiya resheniy. Vvedeniye v issledovaniye operatsiy. Izd. 7-e, M.: Izdatelskiy dom «Viliams». 2007. (in Russian).
- Uiler D., Chambers D. Statisticheskoye upravleniye protsessami: Optimizatsiya biznesa s ispolzovaniyem kontrolnykh kart Shukharta: Per. s angl. M.: Alpina Didzhital. 2018. 409 s. (in Russian).
- Goodwin R., Wright G. Decision Analysis for Management Judgment. 3rd edition. Chichester: Wiley. 2004.
- Genri P. Organizatsiya kak sistema. Printsipy postroyeniya ustoychivogo biznesa Edvardsa Deminga: Per. s angl. M.: Alpina Pablisher. 2018. 368 s. (in Russian).
- Dracheva E.L., Yulikov L.I. Menedzhment. Izd. 2-e, ster. M.: Izdatelskiy tsentr «Akademiya». 2002. 288s. (in Russian).
- Kallan R. Osnovnyye kontseptsii neyronnykh setey. M.: Izdatelskiy dom «Viliams». 2001. (in Russian).
- Nazarov A.V., Loskutov A.I. Neyrosetevyye algoritmy prognozirovaniya i optimizatsii sistem. SPb.: Nauka i tekhnika. 2003. 384 s. (in Russian).
- Zatsarinnyy A.A., Gorshenin A.K., Kondrashev V.A., Volovich K.I., Denisov S.A. K vysoko-proizvoditelnym resheniyam kak uslugam issledovatelskoy tsifrovoy platformy. M.: Procedia Computer Science. 2019. T. 150. S. 622–627. (in Russian).
- Voronin A.V. Modifikatsiya metoda razlozheniya na chasti podgotovki prinyatiya resheniya v situatsionnom tsentre s ispolzovaniyem klassifikatsii prostranstvennykh obyektov v geoinformatsionnoy sisteme. Informatsiya i kosmos. 2019. № 2. S. 100–106. (in Russian).
- Kormen T., Leyzerson Ch., Rivest R., Shtayn K. Algoritmy: postroyeniye i analiz. Izd. 2-e: Per. s angl. M.: Izdatelskiy dom «Viliams». 2007. 1296 s. (in Russian).
- Yakhyayeva G.E. Nechetkiye mnozhestva i neyronnyye seti. Izd. 2-e, ispr. M.: Interent-Universitet Informatsionnykh Tekhnologiy; BINOM. Laboratoriya znaniy. 2008. 316 s. (in Russian).
- Pegat A. Nechetkoye modelirovaniye i upravleniye: Per. s angl. M.: BINOM. Laboratoriya znaniy. 2009. 798 s. (in Russian).
- Ayvazyan S.A. Prikladnaya statistika. Klassifikatsiya i snizheniye razmernosti. M.: Mir. 1989. (in Russian).
- Pat. RF № 2615317 na izobreteniye ot 04.04.2017. Sposob obnaruzheniya vredonosnykh kompyuternykh pro-gramm v trafike seti peredachi dannykh. v tom chisle podvergnutykh kombinatsiyam poli-morfnykh preobrazovaniy. / Voronin A.V., Ponomarev D.V. (in Russian).