Journal Highly available systems №4 for 2018 г.
Article in number:
Development of methods for automatic analysis of social networks to ensure the security of the organization
Type of article: scientific article
DOI: 10.18127/j20729472-201804-07
UDC: 004.9
Authors:

S.S. Migalin – Assistant, HSE (Moscow)

E-mail: sergey@migalin.ru

M.A. Kovrizhnykh – Assistant, HSE (Moscow)

E-mail: makovrizhnykh@gmail.com

A.B. Los – Ph.D.(Phys.-Math.), Associate Professor, HSE (Moscow)

E-mail: alos@hse.ru

Abstract:

The paper deals with the development of an automatic system for the analysis of users of social networks on various grounds. An algorithmic solution is proposed, including the development of a number of separate modules. For the analysis of textual information on pages users and communities selected algorithm lemmatization. The analysis of the photos is performed using the open library of deep machine learning Caffe. Analysis of the circle of communication is the identification of the user's friends with whom he is the most active communication. The following options are available: shared city, shared age, shared friends, likes and reposts from friends and friends. To determine the range of interests of the user, the module checks the pages of his friends, his community and looks for records on which the user has put a «like», then displays information about the record with the ability to go to it. To check the availability of the debt in the enforcement proceedings of the Federal bailiff service developed a module that allows you to look for debt of individuals from public information data Bank in the enforcement proceedings of the Federal bailiff service of Russia through the official APIs of the Federal bailiff service of the Russian Federation. The developed system is tested on real examples and can be recommended, in particular, to personnel services of the organization and security services to obtain information about existing employees and employees hired.

Pages: 28-31
References
  1. Sumkin K.C., Taranenko L.O. Analiz stranici pol’zovatelya social’noy seti «VKontakte» // Molodoy ucheniy. 2016. №12(116). S. 189−194.
  2. Chermisov I.V. Kontent-analiz stranic aktivnikh pol’zovateley social’noy seti «VKontakte»// Vestnik Volgogradskogo gos. un-ta. Ser. 11: Estesnvennie nauki. 2016. №2(16). S. 74−803.
  3. Bagrecov G.I., Shindarev N.A., Abramov M.V., Tulup’eva T.V. Podkhodi k avtomatizacii sbora, strukturirovaniya i analiza informacii o sotrudnikakh kompanii na osnove dannikh socialnoy seti // Trudi VII Vseros. nauchno-praktich. konf. «Nechetkie sistemi, myagkie vichisleniya I intellektual’nie tekhnologii (NCMBIT-2017)». 2017. S. 9−16.
  4. VCIOM. Press-vipusk № 3388 [Elektronniy resurs]. URL = https://wciom.ru/index.php?id=236&uid=116254.
  5. Pashenko A.E., Tulup’eva T.V. Ekspress-analiz replik i metadannikh socialnikh setey s ispolzovaniem programmnikh sredstv avtomatizacii polucheniya dannikh // Materiali Vseros. nauch. konf. po problemam informatiki SPISOK-2014. SPb. 23−25 aprelya 2014. S. 563−568.
  6. Burluckiy V.V. Avtomatizirovanniy analiz aktivnostey polzovateley socialnikh setey dlya viyavleniya obshestvennoy reakcii // Vestnik Yugorskogo gos. un-ta. 2012. № 3(26). S. 62−65.
  7. Ermakova A.Y. Razrabotka metodov prognozirovaniya na primere analiza sredstv vichislitelnoy tekhniki // Promishlennie ASU I kontrolleri. 2017. № 1. S. 28−34.
  8. Donchenko D., Ovchar N., Sadovnikova N., Parygin D., Ather D. Analysis of Comments of Users of Social Networks to Assess the Level of Social Tension // Procedia Computer Science. 2017. V. 119. P. 359−367.
  9. Yakushev A., Mityagin S. Social Networks Mining for Analysis and Modeling Drugs Usage // Procedia Computer Science. 2014. V. 29. P. 2462−2471.
  10. URL = https://github.com/yahoo/open_nsfw.
Date of receipt: 3 августа 2018 г.