350 rub
Journal Highly available systems №1 for 2016 г.
Article in number:
Particular usage characteristics of BIG DATA in medical diagnostics tasks
Authors:
N.Yu. Ilyasova - Dr. Sc. (Eng.), Professor, Department «TC», Samara State Aerospace University, Senior Research Scientist, Image Processing Systems Institute of RAS (Samara). E-mail: ilyasova@smr.ru
A.V. Kupriyanov - Dr. Sc. (Eng.), Professor, Department «TC», Samara State Aerospace University, Senior Research Scientist, Image Processing Systems Institute of RAS (Samara). E-mail: akupr@smr.ru
S.B. Popov - Dr. Sc. (Eng.), Professor, Department «TC», Samara State Aerospace University,
Leading Research Scientist, Image Processing Systems Institute of RAS (Samara). E-mail: spop@smr.ru
R.A. Paringer - Post-graduate Student, Assistant, Department «TC», Samara State Aerospace University, Trainee-researcher, Image Processing Systems Institute of RAS (Samara). E-mail: rusparinger@gmail.com
Abstract:
The paper presents the main research results in the area of data mining application to medicine. A distinctive feature of medical di-agnostics is a high-speed generation of data, mostly unstructured. We propose a new information technology of data mining for different classes of biomedical images based on the methodology of diagnostically relevant information selection and creation of informative characteristics. Application of Big Data technologies in proposed systems of medical diagnostics has allowed to improve the learning set quality and reduce the classification error. Based on these results, the conclusion is made, that the usage of many heterogeneous sources of diagnostic information made it possible to improve the overall quality of the diagnostics.
Pages: 45-52
References
- Trifonova O.P., Ilin V.A., Kolker V.A., Lisicina A.V. Bolshie dannye v biologii i medicine // Actanaturae. 2013. T. 5. № 3 (18). S. 14−17.
- Kolker E., Stewart E., Ozdemir V. OMICS. 2012. V. 3. № 16. P. 138−147.
- Sukhobokov A.A., Lakhvich D.S. Vlijanie instrumentarija BigData na razvitie nauchnykh disciplin, svjazannykh s modelirovaniem // Nauka i Obrazovanie (EHlektronnyjj zhurnal MGTU im. N.EH. Baumana). 2015. № 3. S. 207−240.
- Britkov V.B., Bulychev A.V. Metody analiza bolshikh obemov slabostrukturirovannojj informacii // Informacionnye tekhnologii i vychislitelnye sistemy. 2010. № 1. S. 36−44.
- White T. Hadoop: The Definitive Guide. Thirded. O\'ReillyMedia. Yahoo Press. 2012. 688 p. (Russ. ed.: White T. Hadoop. Podrobnoe rukovodstvo. St. Petersburg. PiterPubl. 2013. 672 p.).
- Ilyasova N. Computer Systems for Geometrical Analysis of Blood Vessels Diagnostic Images // Optical Memory and Neural Networks (Information Optics). 2014. V. 23. № 4. P. 278−286.
- Iljasova N.JU., Kuprijanov A.V., KHramov A.G. Informacionnye tekhnologii analiza izobrazhenijj v zadachakh medicinskojj diagnostiki // Radio i svjaz. 2012. 424 s.
- Iljasova N.JU. Ocenivanie geometricheskikh priznakov prostranstvennojj struktury krovenosnykh sosudov // Kompjuternaja optika. 2014. T. 38. № 3. S. 529−538.
- Gajjdel A.V. Metod soglasovanija napravlennykh teksturnykh priznakov zadachakh analiza biomedicinskikh izobrazhenijj // Kompjuternaja optika. 2015. T. 39. № 2. S. 287−293.
- Iljasova N.JU., Kuprijanov A.V., Paringer R.A. Formirovanie priznakov dlja povyshenija kachestva medicinskojj diagnostiki na osnove metodov diskriminantnogo analiza // Kompjuternaja optika. 2014. T. 38. № 4. S. 751−756.
- Gaidel A.V., Khramov A.G. Application of Texture Analysis for Automated Osteoporosis Diagnostics by Plain Hip Radiography // Pattern Recognition and Image Analysis. 2015. V. 25. № 2. P. 301−305.
- Gaidel A.V., Zelter P.M., Kapishnikov A.V., Khramov A.G. Possibilities of texture analysis of computed tomogram diagnosis of chronic obstructive disease // Optical Memory and Neural Networks. 2015. V. 24. № 3. P. 240−248.
- Ilyasova N.Yu., Kupriyanov A.V., Paringer R.A. The Discriminant Analysis Application to Refine Diagnostic Features of Blood Vessels Images // Optical Memory & Neural Networks (Information Optics). 2015. V. 24. № 4. P. 309−313.
- Gajjdel A.V.Zelter P.M., Kapishnikov A.V., KHramov A.G. Vozmozhnosti teksturnogo analiza kompjuternykh tomogramm v diagnostike khronicheskojj obstruktivnojj bolezni // Kompjuternaja optika. 2014. T. 38. № 4. S. 843−850.
- Iljasova N.JU. Diagnosticheskijj kompleks analiza izobrazhenijj sosudov glaznogo dna // Biotekhnosfera. 2014. № 3. S. 132−138.