350 rub
Journal Highly available systems №1 for 2011 г.
Article in number:
Models of Logical Relations and Application for Detecting Intrusions
in Computer Systems
Authors:
A.V. Agafonov, A.N. Savinykh
Abstract:
One of the relevant tasks for information system with high availability (ISHA) is their protection from different kinds of computer intrusions.
Though notwithstanding intensive research in the field of development of methods and means of ISHA information security providing, the task's solving difficulty, and rapid information technologies development greatly hamper the creation of universal ways of its solving.
Nowadays intrusion detection system (IDS) that are based on the analysis of data bases with the help of different classes of methods of Data Mining, including the methods of exposure of patterns and logical relations between variables in large computer system audit databases are being researched and developed.
The article analyses modern models of logical relations in data bases, gives their classification and describes the application of conjunctive-disjunctive logical rules for detection intrusions into the computer networks based on the local area network and Internet TCP-traffic audit records data
Pages: 25-47
References
- Elkan C. Results of the KDD'99 Classifier Learning Contest, URL: http://www-cse.ucsd.edu/users/elkan/kdresults.html. 1999.
- Hu H., Li J. Using association rules to make rule-based classifiers robust. 16th Australasian Database Conference. Australia. 2005.
- Yu L., Chan C., Wu C., Lin C. Mining association language patterns for negative life event classification. Proceedings of the ACL-IJCNLP 2009 Conference Short Papers. Suntec. Singapore. 2009. Р. 201-204.
- Агафонов А.В. Построение решающих правил на основе поиска динамических логических закономерностей в массивах данных. Доклад на секции №4 «Методы и модели поддержки управленческих решений» Международной научно-практической конференции «Ситуационные центры и современные информационно-аналитические средства поддержки принятия решений». Российская академия государственной службы при Президенте Российской Федерации, г. Москва, 7-9 апреля 2008 года.ы
- Meidan A. About WizRule. URL: www.wizsoft.com.
- Лбов Г.С. Методы обработки разнотипных экспериментальных данных. Новосибирск: Наука. 1981.
- Quinlan J.R. C4.5: Programs for Machine Learning, Morgan Kaufmann. San Mateo. CA. 1993.
- Yin X., Han J. CPAR: Classification based on predictive association rules, Proceedings of 2003 SIAM International Conference on Data Mining. SDM. 2003.
- Загоруйко Н.Г. Прикладные методы анализа данных и знаний. Новосибирск: Институт математики СО РАН. 1999. 270 с.
- Zaki M.J., Parthasarathy S., Ogihara M., Li W. New algorithms for fast discovery of association rules. Proceedings of the Third International Conference on Knowledge Discovery and Data Mining. AAAI Press. 1997. Р. 283-286.
- Han J., Pei H., Yin Y. Mining Frequent Patterns without Candidate Generation. In: Proc. Conf. on the Management of Data (SIGMOD-00). ACM Press. New York. NY. USA 2000.
- Borgelt C. An Implementation of the FP-growth Algorithm, Workshop Open Source Data Mining Software (OSDM'05, Chicago, IL), 1-5. ACM Press. New York. NY. USA 2005.
- Agrawal R., Srikant R. Fast algorithms for mining association rules. Proceedings 20th International Conference on Very Large Data Bases. Morgan Kaufmann. 1994. Р. 487-499.
- Aggelis V. Association rules model of e-banking services, in 5th International Conference on Data Mining, Text Mining and their Business Applications. 2004.
- Au W.H., Chan K.C.C. Mining Fuzzy Association Rules in A Bank-account Database. 2001.
- Xu J., Sung A., Liu Q. Behaviour Mining for Fraud Detection // Journal of Research and Practice in Information Technology. V. 39. February 2007.
- Agarwal R., Joshi M.V. PNrule: A New Framework for Learning Classifier Models in Data Mining (A Case-Study in Network Intrusion Detection). 2001.
- Roddick J.F., Fule P., Graco W.J. Exploratory Medical Knowledge Discovery : Experiences and Issues. 2005.
- Goethals B. Survey on Frequent Pattern Mining, URL: http://www.adrem.ua.ac.be/bibrem/pubs/fpm_survey.pdf. 2003.
- Berthold M.R., Lenz H.-J., Bradley E., Kruse R., Borgelt C., Advances in Intelligent Data Analysis V Proc. 5th International Symposium on Intelligent Data Analysis (IDA), Germany. 2003.
- Agrawal R., Imielinski T., Swami A. Mining Association Rules between Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD Conference Washington DC, USA. 1993.
- Ayres J., Gehke J.E., Yiu T., Flannick J. Sequential patter mining using bitmaps SIGKDD Int-l Conf. on Knowledge Discovery and Data Mining. 2002.
- Weiss G.M. Learning with rare cases and small disjuncts. In Proc. of Twelfth International Conference on Machine Learning, Lake Tahoe. California. USA. 1995. Р. 558-565.