350 rub
Journal Highly available systems №1 for 2009 г.
Article in number:
Problems of multimodal biometrics automatic training
Authors:
O.S. Ushmaev
Abstract:
Nowadays biometric technologies are becoming widely used in application associated with security problems [1-2]. Recently number of tasks have appeared where no single biometrics (like face, finger etc) meets very tough requirements to identification quality. The most important areas with high requirements to biometric solutions are criminal ID, biometric passport, access to classified information. Generally if we any biometric applications, the most widespread approach to fusion is training on some set. As a result, we have discriminant function, that separates genuine matches (if both matched biometric samples belong to one person) and impostor matches (samples does not belong to one person). In that case, on the one hand we can totally control fusion process. On the other hand we face two apparent problems. First, if parameters of the training set differ from operation data, we have to retrain manually. Second, multimodal biometric sets are so small that they are not enough for such simple training at the stage of designing. The basic idea of automatic training process is tuning of "fusion process" without operator or researcher. Such approach allows to decrease expenses on modernization. The second significant advantage is possibility of retraining during operations. The significant methodology problem of automatic training is character of available information affiliated with the fused biometric performance. The lack of information is a typical problem of direct applying well developed statistical technique to multimodal biometrics training. In particular, one the most trouble prone specifics is lack of multimodal bases. We analyzed the experience of multimodal biometrics designing. Basing on the analyses results, we settle requirements an arbitrary the training procedure: - optimal performance as measured by FAR and FRR; - functional requirements: o parametric decision rules; o taking into account biometric specific; o training without multimodal samples; - implementation requirements: o robustness to small training sets; o generalization ability. We studied statistical features of biometric technologies to fill the requirements. We revealed character of dependencies between different biometrics. Approach to automatic training is proposed. The keystones of proposed approach are short-listed below: - division of training process and affiliated problems into several fusion levels; - study of specifics of each fusion level; - taking into account biometric specifics: o stochastic target quality indices; o stochastic character of identification process; o unavailability of multimodal datasets
Pages: 13-24
References
  1. Синицын И.Н., Губин А.В., Ушмаев О.С. Метрологические и биометрические технологии и системы // История науки и техники. 2008. № 7. С. 41 - 44.
  2. Ушмаев О.С., Босов А.В. Реализация концепции многофакторной биометрической идентификации в интегрированных аналитических системах // Системы высокой доступности. 2007. № 4. Т. 3. С. 13 - 23.
  3. Синицын И.Н. Стохастические системы // Теория и стохастические информационные технологии II. 2008.  №7. С.9-12.
  4. Ушмаев О.С. Применение биометрии в аэропортах, BiometricsTTS 2007. 22 ноября 2007 г. http://www.dancom.ru/rus/AIA/Archive/RUVII_BioLinkSolutions_BiometricsInAirports.pdf.
  5. Ушмаев О.С. Реализации концепции многофакторной биометрической идентификации в правоохранительных системах. Интерполитех - 2007. http://www.dancom.ru/rus/AIA/Archive/RUVI_BioLinkSolutions_MultimodalBiometricsConcept.pdf.
  6. James Wayman et al. Biometric Systems: Technology, Design and Performance Evaluation. Springer Verlag. 2004.
  7. Kingsbury N. Technology Assessment: Using Biometrics for Border Security. DIANE Publishing Co. 2003.
  8. Biometrics in Driver-s  License Operations. http://www.biometricgroup.com/dl_id_operations.pdf.
  9. John D. Woodward Jr. «Biometrics: Facing Up to Terrorism». The Biometric Consortium Conference 2002. Arlington. February, 2002.
  10. Синицын И.Н., Новиков С.О., Ушмаев О.С. Развитие технологий интеграции биометрической информации // Системы и средства информатики. 2004. Вып. 14. С. 5 - 36.
  11. ГОСТ Р ИСО/МЭК 19784.
  12. Ушмаев О.С., Синицын И.Н. Опыт проектирования многофакторных биометрических систем // Труды  VIII международной научно-технической конференции. «Кибернетика и высокие технологии XXI века».  Т.1. С. 17 - 28.
  13. Ушмаев О.С., Босов А.В. Реализация концепции многофакторной биометрической идентификации в интегрированных аналитических системах // Бизнес и безопасность в России. Январь 2008. №49. С.104 - 105.
  14. Пугачев В.С., Синицын И.Н.Теория стохастических систем. М.: Логос. 2004.
  15. Синицын И.Н. Фильтры Калмана-Пугачева. М.: Логос. 2007.
  16. Neyman J. and PearsonE.S. On the problem of the most efficient tests of statistical hypotheses // Philos. Trans. Roy. Soc., London A. 1933. V. 231. P. 289 - 337.
  17. Ushmaev O., Novikov S. Biometric Fusion: Robust Approach // MMUA 06. Toulouse. France. May 11-12. 2006. Proceedings.
  18. NIST Biometric Scores Set, Release 1.
  19. Ushmaev O.S. Biometric Fusion: Automatic Training // Proceedings of 9th International Conference in Pattern Recognition and Image Analysis: new information technologies, PRIA-9-2002, September, 14-20, 2008. - N.Novgorod. 2008.  V.2. P.236 - 239.
  20. FVC2000, First International Competition for Fingerprint Verification Algorithms, http://bias.csr.unibo.it/fvc2000/.
  21. FVC2002, the Second International Competition for Fingerprint Verification Algorithms, http://bias.csr.unibo.it/fvc2002/.
  22. FVC2004, the Third International Competition for Fingerprint Verification Algorithms, http://bias.csr.unibo.it/fvc2004/.
  23. FVC2006, the Fourth International Competition for Fingerprint Verification Algorithms, http://bias.csr.unibo.it/fvc2006/.
  24. Watson C. NIST Special Database 14: Mated Fingerprint Card Pairs 2, CD-ROM & documentation. September 1993.
  25. C.Watson, NIST Special Database 29: Plain and Rolled Images from Paired Fingerprint Cards, CD-ROM & documentation. April. 02. 2001.
  26. NIST Color FERET Database.
  27. Face Recognition Vendor Test, http://www.frvt.org.
  28. Face Recognition Vendor Test  2006, http://frvt.org/FRVT2006/.
  29. IAM Handwriting Database, http://www.iam.unibe.ch/fki/databases/iam-handwriting-database.
  30. SVC2004,. The First Signature Verification Competition, http://www.cse.ust.hk/svc2004/index.html.
  31. Garofolo J. S., Lamer L. F., Fischer W. M., Fiscus J. G., Pallet D. S., Dahlgren N. L., Zue V. TIMIT Acoustic-Phonetic Continuous Speech Corpus, http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp-catalogId=LDC93S1.
  32. CASIA Iris Image Database Version 3, http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp.
  33. Mansfield A.J., Wayman J.L. Best Practices in Testing and Reporting Performance of Biometric Devices. UK Biometrics Working Group. 2002.
  34. Ushmaev O., Novikov S. Integral Criteria for Large-scale Multiple Fingerprint Solutions // SPIE Symposium on Security & Defense.  Orlando. FL. USA. April 12-16. 2004.