S.G. Mosin1
1 Kazan Federal University (Kazan, Russia)
1 LLC LabSystems (Vladimir, Russia)
1 smosin@ieee.org
High requirements are imposed on the duration of autonomous operation of user equipment for narrowband Internet-of-Things (UE NB-IoT) up to 10 years when using a 5 Ah battery. The standard provides the low-power consumption operation modes for UE NB-IoT such as Extended Discontinuous Reception (eDRX) and Power Saving Mode (PSM). However, the greatest energy consumption occurs at data transmission, during which the required quality of service (QoS) is ensured due to mechanisms of multiple repetition of resource unit transmission and the transition to less efficient modulation and coding schemes (MCS). Different configurations of uplink (UL) radio resources applying to transmit the same data of a given length from UE NB-IoT to the base station (eNB) can lead to the transceiver consuming different amounts of energy from the battery. Search for a radio resource configuration that ensures minimum power consumption of the transceiver (TRX) when transmitting data from UE NB-IoT to eNB with the required quality, i.e. optimal scheduling of radio resources is an urgent task of widening the application of Cellular IoT.
The main goal of carried out study is development and estimation of a model for searching for an optimal radio resource configuration that reduces the power consumption of TRX when transmitting data over UL.
A model for estimating the power consumption of the UE NB-IoT transceiver when transmitting data over UL is proposed. A set of parameters affecting the amount of power consumption is determined. The problem of searching for a radio resource configuration that reduces the power consumption of the TRX at transmitting data over UL is formulated as an optimization problem and a method for solving it is proposed taking into account the features of the NB-IoT communication channel and the procedures for interaction of user equipment with the eNB. A comprehensive experimental study was conducted, including verification of the proposed model, assessment of the convergence of the proposed solution and the limits of its applicability, uni-variant and multi-variant analysis of the energy consumption of the UE NB-IoT transceiver with optimal scheduling of radio resources for data transmission over UL and assessment of the effectiveness of the proposed solution. The results of numerical simulation demonstrated a decrease of up to 50% of the minimum energy consumption when using the optimal configuration of radio resources compared to the next closest option. The direction of further research aimed at developing the proposed solution for the case of simultaneous interaction with the eNB of many users was determined. The proposed mathematical model and its software implementation are of interest for use in the early stages of automated design of Internet-of-Things networks using NB-IoT technology to select optimal configurations of radio resources in order to increase the battery life of user equipment without reducing the quality of service.
Mosin S.G. Search of optimal uplink radio resources configuration for reducing power consumption of UE NB-IoT at data transmission. Dynamics of complex systems. 2025. V. 19. № 2. P. 40–49. DOI: https://doi.org/10.18127/j19997493-202502-06 [in Russian]
- Daneshmand B.M. Analiz i otsenka effektivnosti metodov obespecheniya kachestva obsluzhivaniya programmno-konfiguriruemykh setey standarta 5G/IMT-2020. Russian Technological Journal. 2021. T. 9. № 5. S. 14–25. [in Russian]
- Kadatskaya O., Saburova S. Support of resourses redistribution in NB-IoT LTE networks. Radiotekhnika. 2024. V. 2. № 217. P. 110–116.
- Popovski P., Trillingsgaard K.F., Simeone O., Durisi G. 5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View. IEEE Access. 2018. V. 6. P. 55765–55779.
- Elgarhy O., Reggiani L., Alam M. M., Zoha A., Ahmad R., Kuusik A. Energy efficiency and latency optimization for IoT URLLC and mMTC use cases. IEEE Access. 2024. V. 12. P. 23132–23148.
- Valentini L., Bernardi E., Saggese F., Chiani M., Paolini E., Popovski P. Contention-Based mMTC/URLLC Coexistence Through Coded Random Access and Massive MIMO. IEEE Journal of Selected Topics in Signal Processing. 2024. V. 18. № 7. P. 1265–1280.
- Novanana S., Kliks A., Arifin A.S., Wibisono G. Performance of 5G Slicing With Access Technologies and Diversity: A Review and Challenges. IEEE Access. 2024. V. 12. P. 170780–170802.
- Goshi E., Mehmeti F., La Porta T.F., Kellerer W. Modeling and Analysis of mMTC Traffic in 5G Core Networks. IEEE Transactions on Network and Service Management. 2025. V. 22. № 1. P. 409–425.
- Krutin D.V., Kislyakov M.A., Mosin S.G. Metody otsenki kachestva kanala svyazi. Tekhnologiya WCDMA. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie. 2012. T. 55. № 5. S. 12–15. [in Russian]
- Kislyakov M.A., Mosin S.G., Savenkova V.S. Proektirovanie besprovodnykh sensornykh setey. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie. 2012. T. 55. № 5. S. 15–19. [in Russian]
- Zhang S., Xue Y., Shi Q., Chang T. Statistical channel modelingmethods in wireless network twinning: current status and frontiers. ZTE technology journal. 2023. V. 29. № 3. P. 26–31.
- Mosin S.G., Efremov I.A. A Wireless System of Data Acquisition. Proc. of IEEE Int. Conference on Computational Technologies in Electrical and Electronics Engineering (SIBIRCON-2010). P. 306–309.
- Artvel R.M., Stepanov M.S. Razrabotka funktsional'noy modeli seti Interneta veshchey na osnove tekhnologii Nnarrow Band Internet of Things (NB-IoT). Telekommunikatsii i informatsionnye tekhnologii. 2020. T. 7. № 2. S. 39–44. [in Russian]
- Li Y., Zhang S., Ren X., Zhu J. et al. Real-world wireless network modeling andoptimization: From model/data-driven perspective. Chinese Journal of Electronics. 2022. V. 31. № 6. P. 991–1012.
- Lantsov V.N., Merkutov A.S. Algoritm rascheta kvaziperiodicheskikh protsessov v nelineynykh radiotekhnicheskikh ustroystvakh. Izvestiya VUZov. Radioelektronika. 1990. T. 33. № 6. S. 12–17. [in Russian]
- Merkutov A.S. Issledovanie vozmozhnostey povysheniya effektivnosti radiosistem UKV-diapazona s ispol'zovaniem SAPR. Dinamika slozhnykh sistem - XXI vek. 2018. T. 12. № 2. S. 69–74. [in Russian]
- Bakhtin A.A., Timoshenko A.G., Sokolov M.A. Razrabotka i issledovanie energoeffektivnogo usilitelya moshchnosti dlya NB-IoT i LoRaWAN. Elektronnaya tekhnika. Ser. 3: Mikroelektronika. 2019. № 4 (176). S. 27–35. [in Russian]
- Lantsov V.N., Mosin S.G. Sovremennye podkhody k proektirovaniyu i testirovaniyu integral'nykh mikroskhem: Monografiya. Vladimir: Izd-vo Vladim. gos. un-ta. 2010. [in Russian]
- Kotlyarov E.Yu., Putrya M.G., Mikhaylov V.Yu., Zubov I.A., Vasil'ev E.S. Razrabotka prototipa mikroskhemy maloshumyashchego usilitelya dlya priemnogo trakta NB-IoT-sistemy. Izvestiya vysshikh uchebnykh zavedeniy. Elektronika. 2022. T. 27. № 6. S. 740–752. [in Russian]
- Abbas M.T., Grinnemo K.-J., Eklund J., Alfredsson S., Rajiullah M., Brunstrom A. et al. Energy-saving solutions for cellular Internet of Things–A survey. IEEE Access, vol. 10, pp. 62073–62096, 2022.
- Manzar S.A., Verma S., Gupta S.H. Analysis and optimization of downlink energy in NB-IoT. Sustainable Computing: Informatics and Systems. 2022. V. 35. № 9. ID 100757.
- Al-Sammak K.A., Al-Gburi S.H., Marghescu I. et al. Optimizing IoT Energy Efficiency: Real-Time Adaptive Algorithms for Smart Meters with LoRaWAN and NB-IoT. Energies. 2025. V. 18. № 4. ID 987.
- Bortnik D., Nikic V., Sobot S., Vukobratovic D., Mezei I., Lukic M. Evaluation of Machine Learning Algorithms for NB-IoT Module Energy Consumption Estimation Based on Radio Channel Quality. IEEE Access. 2025. V. 13. P. 2389–2408.
- Mosin S. A Model of LoRaWAN Communication in Class A for Design Automation of Wireless Sensor Networks Based on the IoT Paradigm. Proc. 2018 IEEE East-West Design & Test Symposium (EWDTS). Kazan. Russia. 2018. P. 1–6.
- Evangelakos E.A., Kandris D., Rountos D., Tselikis G., Anastasiadis E. Energy Sustainability in Wireless Sensor Networks: An Analytical Survey. Journal of Low Power Electronics and Applications. 2022. V. 12. № 4. Paper ID 65.
- Sørensen A., Wang H., Remy M.J., Kjettrup N., Sørensen R.B., Nielsen J.J. et al. Modeling and experimental validation for battery lifetime estimation in NB-IoT and LTE-M. IEEE Internet Things J. 2022. V. 9. № 12. P. 9804–9819.
- Mosin S. A Model for Univariant and Multivariant Simulating the Battery Lifetime of UE NB-IoT. Proc. International Russian Automation Conference (RusAutoCon). Sochi. Russia. 2024. P. 13–18.
- 3GPP TS 36.211. Evolved Universal Terrestrial Radio Access (E-UTRA). Physical Channels and Modulation. 2017. V. 14.4.0. P. 1–6.
- 3GPP. 3GPP TS 36.213, Physical layer procedures (Release 13, v13.9.0). Technical report, 3GPP. April 2018.

