350 rub
Journal Dynamics of Complex Systems - XXI century №2 for 2025 г.
Article in number:
Hardware-software co-design of intelligent multi-core cyber-physical systems-on-chip with universality, scalability and energy-efficiency properties
Type of article: scientific article
DOI: https://doi.org/10.18127/j19997493-202502-05
UDC: 004.032
Authors:

V.N. Ruchkin1, B.V. Kostrov2, D.V. Grigorenko3, D.R. Pikulin4, E.V. Ruchkina5

1 Moscow University named after S.J. Vitte (Ryazan branch) (Moscow, Russia)
2,3,5 Ryazan state radioengineering university named after V.F. Utkin (Ryazan, Russia)
4 Ryazan state university named after S.А. Yesenina (Ryazan, Russia)
1 v.ruchkin@muv.ru, v.ruchkin@rsu-rzn.ru, 2 kostrov.b.v@evm.rsreu.ru, 3 info@rznprb.com, 4 d.pikulin@rsu-rzn.ru,
5 ek-ruchkina@yandex.ru

Abstract:

The possibilities of intelligent multi-core Cyber-Physical System on Chip (CPSoN) for providing high-quality properties of universality, scalability and energy-efficiency based on modern VLSI K1879ВМ8Я and software Neuro Matrix are shown. A methodology for intelligent management of neuroprocessor resources is proposed for the purpose of joint design of hardware and software (Co-Design) based on Intellectual Multiprocessing and set-theoretical equivalence of a group of algorithms, a group of cores and a group of robots on a chip. Mathematical formalization of the analysis of various structures is carried out for the purpose of an optimal choice allowing us to design software-reconfigurable multi-core neuroprocessor architecture for processing large data flows. Modeling multi-criteria control for choosing the best structure according to various technical characteristics is carried out with emphasis on significant speed up the work of neural network tools, accelerators and servers.

Pages: 30-39
For citation

Ruchkin V.N., Kostrov B.V., Grigorenko D.V., Pikulin D.R., Ruchkina E.V. Hardware-software co-design of intelligent multi-core cyber-physical systems-on-chip with universality, scalability and energy-efficiency properties. Dynamics of complex systems. 2025. V. 19. № 2. P. 30–39. DOI: https://doi.org/10.18127/j19997493-202502-05 [in Russian]

References
  1. Jóźwiak L. Advanced Mobile and Wearable Systems. Microprocessors and Microsystems. 2017. V. 50. P. 202–221.
  2. Jóźwiak L. Embedded Computing Technology for Highly-demanding Cyber-physical Systems. IFAC-PapersOnLine. 2015. № 48(4). P. 19–30.
  3. Chernikov A., Chernikov V., Vixne P., Shelukhin A. High-Performance NMC4 Vector Processor Core for Fixed and Floating Point Calculations. Proceeding of 6th Moscow Supercomputing Forum 2015. P. 13–14.
  4. Teich J. Hardware/Software Codesign: The Past, the Present, and Predicting the Future. Proceedings of the IEEE. 2012. V. 100. № Special Centennial Issue. P. 1411–1430.
  5. Platunov A.E. Vstraivaemye sistemy upravleniya. Control Engineering Rossiya. 2013. T. 43. № 1. S. 16–24. [in Russian]
  6. Chernikov A., Chernikov V., Vixne P., Shelukhin A. New Core of Signal Processor Core NMC4 of Set Neuro Matrix. Proc. of 6th Moscow Supercomputing Forum. 2015. P. 12–13.
  7. Lantsov V.N. Proektirovanie PLIS na VHDL Ucheb. posobie; M-vo obrazovaniya Ros. Federatsii, Vladimir. gos. un-t. Vladimir: VlGU. 2000. [in Russian]
  8. Bykov S.O., Mosin S.G. Metodika avtomatizirovannogo proektirovaniya setey-na-kristalle so spetsializirovannoy topologiey. Dinamika slozhnykh sistem – XXI vek. 2015. T. 9. №4. S. 63–66. [in Russian]
  9. Gorbachev Ya.G., Platunov A.E., Pinkevich V.Yu., Kol'churin M.V. Kiberfizicheskie sistemy. Metody vysokourovnevogo proektirovaniya. SPb: Universitet ITMO. 2022. [in Russian]
  10. Chen S., Huang L., Xiao X., Liu Y., Xie G., Li R. Cyber-Physical Systems Design in An Uncertain Environment with Time Uncertainty Concern. Proc. IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS), Ocean Flower Island, China. 2023. P. 2015–2024.
  11. Bykov S.O., Parnevich P.V., Mosin S.G. Design automation of integrated circuits by network-on-chip technology. Proc. of International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, Lviv, Ukraine. 2012. P. 359.
  12. Mosin S.G., Khassan Md.M., Tukhtamirzaev A.Yu. Matematicheskaya model' pol'zovatel'skoy seti-na-kristalle. Programmnye produkty i sistemy. 2012. № 3. S. 249–252. [in Russian]
  13. Dipesh and Chatterjee U. Door Knock: Reverse Engineering the MPSoC Layout Through Timing Attack on NoC. IEEE Embedded Systems Letters. 2024. V. 16. № 4. P. 449–452.
  14. Ruchkin V., Soldatov G., Koryachko A., Kostrov B., Ruchkina E. Conceptual Model of Hardware & Software Co-design for Multicore Systems on Chip. Proc. 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro. 2020. P. 1–4.
  15. Cardoso J.L.F.P., Grogan P.T., Pennock M.J. Classifying Interoperability Problems in Cyber-Physical Systems: Empirical Cases from OpenWrt. IEEE Systems Journal. 2024. V. 18. № 3. P. 1658–1668.
  16. Patel N. et al. Towards a New Thermal Monitoring Based Framework for Embedded CPS Device Security. IEEE Transactions on Dependable and Secure Computing. 2022. V. 19. № 1. P. 524–536.
  17. Fuketa H., Uchiyama K. Edge Artificial Intelligence Chips for the Cyberphysical Systems Era. Computer. 2021. V. 54. № 1. P. 84–88.
  18. Fakhr Shamloo N., De Santis E., Domenica Di Benedetto M. Security and Diagnosability of Finite State Machines Under Cyber-Attacks. IEEE Transactions on Automation Science and Engineering. 2025. V. 22. P. 5108–5116.
  19. Dehnavi S., Goswami D., Goossens K. Analyzable Publish-Subcribe Communication Through a Wait-Free FIFO Channel for MPSoC Real-Time Applications. Proc. IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Singapore. 2021. P. 388–395.
  20. Lantsov V.N., Maslenkov A.V. Analiz parametricheskikh ustroystv effektivnym iteratsionnym metodom. Izvestiya vysshikh uchebnykh zavedeniy. Elektronika. 1999. № 1–2. R. 97–104. [in Russian]
  21. Matyukha V.A., Voloshchuk S.S., Mosin S.G. Razrabotka universal'nogo nastraivaemogo vychislitelya tselochislennogo kvadratnogo kornya na baze PLIS. Izvestiya vysshikh uchebnykh zavedeniy. Elektronika. 2022. T. 27. № 2. S. 205–217. [in Russian]
  22. Ahmadi-Pour S., Herdt V., Drechsler R. RISC-V AMS VP: An Open Source Evaluation Platform for Cyber-Physical Systems. Proc. of Forum on specification & Design Languages (FDL), Antibes, France. 2021. P. 1–7.
  23. Valente L., Restuccia F., Rossi D., Kastner R., Benini L. TOP: Towards Open & Predictable Heterogeneous SoCs. IEEE Transactions on Computers. 2024. V. 73. № 12. P. 2678–2692.
  24. Ruchkin V.N., Kostrov B.V., Romanchuk V.A., Fulin V.A. Mnogokriterial'nyy nechetkiy vybor vychislitel'noy struktury na osnove klasterizatsii. Dinamika slozhnykh sistem - XXI vek. 2016. T. 10. № 1. S. 33–40. [in Russian]
  25. Ruchkin V.N., Kostrov B.V., Romanchuk V.A., Fulin V.A. Analiz yavnogo i neyavnogo parallelizma na osnove klasterizatsii vychislitel'nykh sistem. Dinamika slozhnykh sistem – XXI vek. 2015. T. 9. № 2. S. 20–28. [in Russian]
  26. Ruchkin V.N., Kostrov B.V., Kolesenkov A.N. Informatsionnoe, operatsionnoe i algoritmicheskoe obespechenie kiber-fizicheskoy sistemy monitoringa chrezvychaynykh situatsiy. Dinamika slozhnykh sistem - XXI vek. 2017. T. 11. № 2. S. 18–24. [in Russian]
Date of receipt: 13.05.2025
Approved after review: 22.05.2025
Accepted for publication: 26.05.2025