350 rub
Journal Dynamics of Complex Systems - XXI century №3 for 2022 г.
Article in number:
Mathematical model of enhanced power availability space vehicle movement
Type of article: scientific article
DOI: 10.18127/j19997493-202203-02
UDC: 629.7.015 (083.3)
Authors:

I.I. Dementev1

1 JSC «Concern “Oceanpribor” (St. Petersburg, Russia) 

Abstract:

Relevant tasks of space research and exploration require enhancement of power availability of space vehicles from tens of kW to mW units of electric power of onboard power systems. Advanced developments in this field led to change of vehicle structure towards application of large-size thin-walled attached elastic structural parts in these structures. Enhanced power availability vehicle flight dynamics differs from previous generation vehicle dynamics with contribution to linear and angular momentum of movement of centers of mass and movement relative to centers of mass as well as to vibrational movement of attached elastic structural parts.

Influence of vibrations of elastic structural parts on movement of vehicles requires new approaches toward designing of movement control systems. Validation of characteristics of instrument components of movement control systems that are capable to remain resistance to disturbing actions of vibrations of elastic structural parts is based on results of mathematical modelling of vehicle dynamics. Common mathematical models of translational and rotational movement of previous generation vehicles describe actual process of enhanced power availability vehicle dynamics with a high degree of abstraction since they are based on assumptions of absolute stiffness of body casings and structural parts or on lack of influence of vibrations of attached elastic structural parts on vehicle movement. Level of abstraction of modelling object used for designing of movement control systems of previous generation vehicles doesn’t permit to sufficiently describe of enhanced power availability vehicle dynamics and as a result properly validate characteristics of instrument components of movement control systems

The articles presents new mathematical model of enhanced power availability space vehicle movement in the development of which the following features: elasticity of body casing and attached structural parts, need of change of coordinate system concerning which vehicle movement is tracked for solving tasks of deep space exploration as well as large-scale nomenclature of factors that influence on dynamics are taken into account.

Developed mathematical model has applied orientations:

  1. It helps to solve for the first time the problem of prediction of dynamics of vehicles with centers of mass that vary in time and volume (space) of constructions.
  2. It helps to optimize characteristics of instrument components for solving of tasks of maneuvering, orientation and stabilization in space when designing of enhanced power availability movement control systems.
Pages: 14-25
For citation

Dementev I.I. Mathematical model of enhanced power availability space vehicle movement. Dynamics of complex systems. 2022.  V. 16. № 3. P. 14−25. DOI: 10.18127/j19997493-202203-02 (in Russian)

References
  1. Askerov F.A., Atamasov V.D., Poletaev B.I. Kosmonavtika XXI veka i yadernye termoemissionnye energeticheskie ustanovki. Pod red. A.P. Kovaleva, V.F. Fateeva. SPb.: Agentstvo «RDK-Print», 2002. 384 s. (in Russian).
  2. Atamasov V.D. i dr. Teoreticheskie osnovy, osobennosti konstrukcij i ispytanij yadernyh energeticheskih ustanovok kosmicheskogo bazirovaniya: Uchebnik. SPb.: ANO LA «Professional». 2016. 640 s. (in Russian).
  3. Sapego M.K. i dr. Teoriya proektirovaniya slozhnyh tekhnicheskih sistem kosmicheskogo bazirovaniya: uchebnik. SPb.: NPO «Professional». 2012. 560 s. (in Russian).
  4. Atamasov V.D. i dr. YAdernye orbital'nye kompleksy: Uchebnik. SPb.: ANO LA «Professional». 2016. 800 s. (in Russian).
  5. Manujlov YU.S. Teoriya upravleniya prostranstvennym uglovym manevrirovaniem kosmicheskogo apparata s uprugimi elementami konstrukcii. MO RF. 2001. 497 s. (in Russian).
  6. Abdurahimov A.A., Mosin D.A., Urtmincev I.A., SHagovikov A.V. Osnovy konstrukcii kosmicheskih apparatov: Ucheb. posobie. SPb.: VKA im. A.F. Mozhajskogo. 2013. 146 s. (in Russian).
  7. Romanov A.V., Testoedov N.A. Osnovy proektirovaniya informacionno-upravlyayushchih i mekhanicheskih sistem kosmicheskih apparatov: uchebnik. Pod red. V.D. Atamasova. SPb.: ANO LA «Professional». 2015. 240 s. (in Russian).
  8. Ivanov N.M., Lysenko L.N. Ballistika i navigaciya kosmicheskih apparatov. M.: Drofa. 2004. 544 s. (in Russian).
  9. Degtyarev G.L., Sirazetdinov T.K. Teoreticheskie osnovy optimal'nogo upravleniya uprugimi kosmicheskimi apparatami. M.: Mashinostroenie. 1986. 216 s. (in Russian).
  10. Popov V.I. Sistemy orientacii i stabilizacii kosmicheskih apparatov. M.: Mashinostroenie. 1986. 184 s. (in Russian)
  11. Silaev A.V. Gradientnyj algoritm adaptacii v sisteme upravleniya orientaciej deformiruemogo kosmicheskogo apparata [Elektronnyj resurs]. Problemy upravleniya. 2010. № 5. Rezhim dostupa: http://cyberleninka.ru/article/n/gradientnyy-algoritm-adaptatsii-v-sistemeupravleniya-orientatsiey-deformiruemogo-kosmicheskogo-apparata, svobodnyj. – Zagl. s ekrana. (in Russian)
  12. Uspenskij V.B., Gudzenko A.V. Upravlenie orientaciej i stabilizaciya malogo kosmicheskogo apparata s uchetom uprugih svojstv ob"ekta. Vestnik Dnepropetrovskogo nacional'nogo universiteta. Ser.: Raketno-kosmicheskaya tekhnika. 2011. Vyp. 19. № 4. S. 45–50 (in Russian).
  13. Zhilin P.A. Vektory i tenzory vtorogo ranga v trekhmernom prostranstve. SPb.: Nestor. 2001. 275 s. (in Russian).
  14. Zhilin P.A. Racional'naya mekhanika sploshnyh sred: uchebnoe posobie. Pod red. E.A. Ivanovoj. SPb.: Izd-vo Politekhn. un-ta. 2012. 584 s. (in Russian).
  15. Dement'ev I.I. Teoriya kolebanij konstrukcij kosmicheskih apparatov: monografiya. SPb.: ANO LA «Professional». 2019. 264 s. (in Russian).
Date of receipt: 24.06.2022
Approved after review: 12.07.2022
Accepted for publication: 22.08.2022