350 rub
Journal Dynamics of Complex Systems - XXI century №3 for 2021 г.
Article in number:
Stabilization of the movement speed of the output link of the hydraulic actuators in the volumetric hydraulic drive
Type of article: overview article
DOI: 10.18127/j19997493-202103-05
UDC: 543.8 + 541.13
Authors:

V.N. Pilgunov1, K.D. Efremova2

1–2 Bauman Moscow State Technical University (Moscow, Russia)

Abstract:

In a volumetric hydraulic drive the speed control of the hydraulic actuators output link is provided by changing the working volume of the pump (VOLUMETRIC CONTROL) or by changing of the hydraulic resistance of the lines (THROTTLE CONTROL). The latter provides for installation of an adjustable throttle in the pressure or drain line for hydraulic motor (sequential primary or secondary regulation), as well as, a controlled bypass of the pump supply into its suction line. Since during the throttle control of the speed of an output link of the hydraulic motor, load determines the pressure drop across the throttle and, therefore, the volumetric flow rate in the line, this control method cannot ensure the invariance of the volumetric hydraulic drive to the load on the actuator, which is necessary if it is used to rotate or to provide the antenna scanning for the radar stations and also the radar for the mobile above-water and land transport systems, that having a high sailing are exposed to significant contrary and fair wind load. In this case, the high quality of the stabilization of the loaded output links rotation speed is possible only in the case of using instead off a throttle the flowcontrollers. At the same time, it should be noted, that in the conditions of the more strict requirements for the control accuracy oblige to use the servo-hydraulic drive with the negative feedback in angular velocity of the output shaft rotation. 

Authors of the proposed article are consider the design features of some typical 2- and 3-linear flow controllers and also carried out a set of experimental studies of volumetric hydraulic drive with throttle control, provided 3-linear flow-controller, as a result of which the kinematic and dynamic characteristics of the volumetric hydraulic drive with a changing load on the output link at main and additional (secondary) hydraulic motors were obtained. The received results of experimental studies allowed for this article authors elaborate the adequacy of the developed mathematical model of a 3-linear flow-controller and to offer methodological recommendations for determining the parameters of its own components.

In the conditions of limited availability of information on the design features and methodology of the flow-controllers, the results of experimental studies and proposed mathematical model of a 3-linear flow-controller can have some value in developing designs of flow-controllers, determining the parameters of their component elements, as well as in the use the flow-controllers in the loadinvariant volumetric hydraulic drives.

Pages: 56-67
For citation

Pilgunov V.N., Efremova K.D. Stabilization of the movement speed of the output link of the hydraulic actuators in the volumetric hydraulic drive. Dynamics of complex systems. 2021. T. 15. № 3. Р. 56−67. DOI: 10.18127/j19997493-202103-05 (In Russian)

References
  1. Antonenko V.I., Sidorenko V.S. Nepryamoe drossel'noe regulirovanie v mnogodvigatel'nyh gidromekhanicheskih sistemah. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta. 2016. T. 10. № 16. S. 70–75 (In Russian).
  2. Grinchar N.G., Chalova M.Yu. Drossel'noe regulirovanie gidroprivoda putevyh i stroitel'-nyh mashin. Metodicheskie ukazaniya. M.: MGUPS (MIIT). 2015. 30 s. (In Russian).
  3. Zubrilov G.Yu., Mel'nikov V.G. Drossel'noe regulirovanie skorosti opuskaniya strely gru-zopod"emnogo mekhanizma. Stroitel'nye i dorozhnye mashiny. 2015. № 7. S. 32–34 (In Russian).
  4. Denisov V.A. Osobennosti drossel'nogo regulirovaniya gidroprivodov. Molodoj uchenyj. Iyun' 2013. № 6. S. 49–52 (In Russian).
  5. Nikitin O.F. Gidravlika i gidro-pnevmoprivody. M.: Izd-vo MGTU im. N.E. Baumana. 2012. 430 s. (In Russian).
  6. Popov D.N. Mekhanika gidro- i pnevmoprivodov: Uchebnik dlya vuzov. M.: Izd-vo MGTU im. N.E. Baumana. 2009. 450 s. (In Russian).
  7. Efremova K.D., Pil'gunov V.N. Ispol'zovanie mnogofunkcional'nogo klapana davleniya v ob"emnyh gidroprivodah. Mashinostroenie i komp'yuternye tekhnologii. 2019. № 2. S. 1–14. htps://doi.org/10.24108/0319/0001476 (In Russian)
  8. Wave Processes Regulators Optimisation in Hydraulic Systems. D. N. Popov, N. G. Sosnovsky and M.V. Siukhin. 2018. IOP Conf. Ser.: Mater. Sci.Eng.468 012014. hpps ://iop science.iop.org/issue/1757-899X/468/012014.
  9. Bashta T.M., Rudnev S.S., Nekrasov B.B. Gidravlika, gidromashny i gidroprivod. M.: Mashi-nostroenie. 1982. 423 s. (In Russian).
  10. Emel'yanov A.T., Prokop'ev A.P., Klimov A.S. Modelirovanie processa gidroprivoda s dros-sel'nym regulirovaniem. Stroitel'nye i dorozhnye mashiny. 2009. № 11. S. 30–33 (In Russian).
  11. Pil'gunov V.N., Efremova K.D. Analiz effektivnosti drossel'nogo regulirovaniya skorosti v ob"emnyh gidroprivodah. Elektronnyj zhurnal «Mashinostroenie i komp'yuternye tekhnolo-gii» 2012. № 2. S. 13–33. htps://doi.org/10.24108/0219/0001455 (In Russian).
  12. Numerical investigation of flow through triangular duct: The coexistence of laminar and turbulent flow. Intern. Journal of Heat and Fluid Flow. June 2013. V. 41. P. 27–33.
  13. Ravinesh C. Deo. Comparative Analysis of Turbulant Plane Jets from a Sharp-Edged Orifice, a Bev-eled-Edge Orifice and a Radially Contoured Nozzle. «Engineering and Technology Intern. Journal of Me-chanical, Aerospace, Industrial and Mechatronics Engineering». 2013. V. 7. № 12. P.1496–1505.
  14. Pil'gunov V.N., Efremova K.D. Osobennosti istecheniya zhidkosti cherez otverstiya nekrugloj formy. Elektronnyj zhurnal «Nauku i obrazovanie», MGTU im. N.E. Baumana, fevral' 2015, № 2. DOI: 10.7463/0215.075817. htpp://technomag.bmstu.ru/doc/75817.html (In Russian).
  15. Al'tshul' A.V. Gidravlicheskie soprotivleniya. M.: Strojizdat. 1982. 224 s. (In Russian).
  16. Thoma J. Mathematical model and effective performance of hydrostatic machines and transmions. Hydraulic and Pneumatic Power. 1969. November. P. 642–651.
  17. Pil'gunov V.N., Efremova K.V. Issledovanie energeticheskih harakteristik gidroprivoda s drossel'nym regulirovaniem. Inzhenernyj zhurnal: nauka i innovacii. 2013. № 5. http://engjournal.ru/catalog.machin/hydro/685.htnl (In Russian).
Date of receipt: 27.07.2021
Approved after review: 10.08.2021
Accepted for publication: 27.08.2021