350 rub
Journal Dynamics of Complex Systems - XXI century №3 for 2021 г.
Article in number:
Calculation of eigen frequencies of systems with damping
Type of article: overview article
DOI: 10.18127/j19997493-202103-04
UDC: 621.03, 004.942, 519.876.5
Authors:

V.A. Trudonoshin1, V.A. Ovchinnikov2, A.S. Domnikoff3

1 Bauman Moscow State Technical University (Moscow, Russia),

2 Laduga LLC (Togliatti, Russia),

3 National Research Nuclear University "MEPhI" (NIAU MEPhI) (Obninsk, Russia

Abstract:

This paper considers a problem of detecting all resonance frequencies during the design phase for complex technical objects made of sub-systems of various physical natures with the unknown point of application of a harmonic input. Consequently, it is required to choose a proper calculation method for eigen frequencies and eigen vectors for those systems. Results. Is to analyze mathematical methods for calculating eigen frequencies and eigen vectors of complex technical systems with sub-systems of different nature and give recommendations on selecting a proper method and its justification. Results. It is demonstrated that in order to calculate eigen frequencies of mechanical systems, a use of a system of Cauchy differential equations is appropriate because it allows avoiding limitations caused by a traditional mathematical model. It is shown that the eigen frequency and eigen vector analysis helps one to determine eigen frequencies in presence of dampening as well as the ratio of amplitude of oscillation on those frequencies. Practical significance. The proposed method for selecting calculation technique for eigen frequencies and eigen vectors helps one to determine eigen frequencies in presence of dampening as well as the ratio of amplitude of oscillation on those frequencies. This method is applicable to the nonlinear system analysis in arbitrary points of nonlinearity.

Pages: 48-55
For citation

Trudonoshin V.A., Ovchinnikov V.A., Domnikoff A.S. Calculation of eigen frequencies of systems with damping. Dynamics of complex systems. 2021. T. 15. № 3. Р. 48−55. DOI: 10.18127/j19997493-202103-04 (In Russian)

References
  1. TimoShenko S.P., Yang D.H., Uiver U. KolebaniYa v inZhenernom dele. M.: MaShinostroenie. 1985. 472 s. (In Russian).
  2. Popov V.B., Chuprynin Yu.V., DZhasov D.B. Analiz sobstvennyh Chastot i opredelenie dinamiCheskih koefficientov trans-missii sel'skohozYajstvennoj maShiny. Vestnik GGTU im. P.O. Suhogo. 2017. № 2 (In Russian). 
  3. TrudonoShin V.A., Fedoruk V.G. Modificirovannye metod peremennyh sostoYaniYa. MaShinostroenie i komp'Yuternye tekh-nologii. 2019. № 6 DOI: 10.24108/0619.0001504 (In Russian).
  4. URL: http://www.math24.ru/metod-sobstvennyh-znaChenij-i-sobstvennyh-vektorov.html (data obraShCheniYa:07.07.2021) (In Russian).
  5. Mohta Brijgopal R., Evaluation of methods for analysis of multi-degree-of-freedom systems with damping (1968). Masters The-ses. 5272. https://sCholarsmine.mst.edu/masters_theses/5272 (data obraShCheniYa: 07.07.2021).
  6. Muranov A. Analysis of damped linear dynamic systems and application of component mode synthesis. University of britiSh Co-lumbia. 1994.
  7. TrudonoShin V.A., Fedoruk V.G. Analiz sobstvennyh Chastot v universal'nyh programmah analiza dinamiCheskih proces-sov. Nauka i obrazovanie: elektronnoe nauChno-tekhniCheskoe izdanie 2016. № 12. DOI: 10.7463/1216.0852553 (In Russian).
  8. Chelomej V.N. i dr. Vibracii v tekhnike. SpravoChnik v 6 tomah. M.: MaShinostroenie. 1968 (In Russian).
  9. MartynYuk V.A., TrudonoShin V.A., Fedoruk V.G. Sravnenie rezul'tatov analiza dinamiCheskih sistem na makrourovne s pomoShCh'Yu oteChestvennyh i zarubeZhnyh kompleksov SAPR. Nauka i obrazovanie: elektronnoe nauChno-tekhniCheskoe izdanie 2015. № 11. http://teChnomag.bmstu.ru/doc/817294.html DOI: 10.7463/1115.0817294 (In Russian).
Date of receipt: 30.07.2021
Approved after review: 12.08.2021
Accepted for publication: 27.08.2021