A.S. Kuziaev1, A.S. Raevsky2, A.Yu. Sedakov3
1, 3 FSUE RFNC «All-Russian Research Institute of Experimental Physics» (Sarov, Russia)
2, 3 Nizhny Novgorod State Technical University named after R.E. Alekseev (Nizhny Novgorod, Russia)
1 admiral.2014@yandex.ru, 2 raevsky_as@mail.ru, 3 niiis@niiis.nnov.ru
Statement of the problem. Aircraft moving in the atmosphere at an altitude of 20–100 km at high speed are covered with a layer of high-temperature plasma shielding radio waves, which leads to the loss of communication with the aircraft for several minutes. This is one of the most dangerous stages of flight, as the plasma shell interferes with radio communication, telemetry, and the reception of navigation signals. The problem of "disconnection" that emerged with the first returnable space flights remains an unresolved issue since the beginning of the first returnable space flights. Many studies have been conducted.
Purpose. To investigate, based on the analysis of open sources, the existing mathematical models of the plasma shell and methods of overcoming this shell in order to transmit information through it.
Results. The article provides an overview of open publications dedicated to the study of the plasma shell around aircraft and the development of methods for overcoming the problem of communication loss.
Practical significance. The results of the work will be used in the modernization of communication systems with aircraft in order to solve the problem of communication loss with them when entering the dense layers of the atmosphere.
Kuziaev A.S., Raevskii A.S., Sedakov A.Yu. Research in the field of combating communication interruption with aircraft surrounded
by a plasma shell. Achievements of modern radioelectronics. 2026. V. 80. № 1. P. 18–25. DOI: https://doi.org/10.18127/j20700784-202601-02 [in Russian]
- Shi Lei, Zhao Lei, Yao Bo, Li Xiaoping. Telemetry Channel Capacity Assessment for Reentry Vehicles in Plasma Sheath Environment. Plasma Sci. Technol. 2015. V. 17. P. 1006.
- Sha Y.X., Zhang H.L., Guo X.Y., Xia M.Y. Analyses of Electromagnetic Properties of a Hypersonic Object With Plasma Sheath. IEEE Transactions On Antennas And Propagation. 2019. V. 67. № 4. P. 2470.
- Shi L., Guo B.L., Liu Y.M., Li J.T. Characteristic of plasma sheath channel and its effect on communication. Prog. Electromagn. Res. 2015. V. 123. P. 321.
- By`kova N.G., Gochelashvili K.S., Zabelinskij I.E., Karfidov D.M., Makarenko G.F., Senatorov A.K., Sergejchev K.F., Shatalov O.P. E`ksperimental`noe issledovanie proxozhdeniya SVCh (40 GGcz) i lazernogo izlucheniya (1,55 mkm) skvoz` sloj vozdushnoj plazmy` za frontom udarnoj volny`. Fiziko-ximicheskaya kinetika v gazovoj dinamike, 2017. T. 18 (1). 11 s. http://chemphys.edu.ru/issues/ 2017-18-1/articles/679/.
- Zheng L., Zhao Q., Xing X.J. Effect of Plasma on Electromagnetic Wave Propagation and THz Communications for Reentry Flight. ACES Journal. 2015. V. 30. № 11. P. 1241.
- Kim M. Keidar M., Boyd I.D. Analysis of an Electromagnetic Mitigation Scheme for Reentry Telemetry Through Plasma. Journal of Spacecraft and Rockets. 2008. V. 45. № 6. P. 1223.
- Trubnikov B.A. Teoriya plazmy`: Ucheb. posobie. M.: E`nergoatomizdat. 1996. 462 s.
- Gillman E.D., Foster J.E., Blankson I.M. Review of Leading Approaches for Mitigating Hypersonic Vehicle Communications Blackout and a Method of Ceramic Particulate Injection Via Cathode Spot Arcs for Blackout Mitigation. Glenn Research Center Cleveland. Ohio. NASA/TM: 216220. 2010. 24 c.
- Zhao L., Bai B.W., Bao W.M., Li X.P. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property. International Journal of Antennas and Propagation. 2013. 8 c.
- Kuzyaev A.S. Preodolenie ploskoj e`lektromagnitnoj volnoj plazmennoj obolochki, okruzhayushhej letatel`ny`j apparat. Sb. mater. XVII nauchno-texn. konf. molody`x specialistov «Vy`sokie texnologii atomnoj otrasli. molodezh` v innovacionnom processe». Sarov, 2024. C. 301.
- Korotkevich A.O., Newell A.C., Zakharov V.E. Communication through plasma sheaths. J. Appl. Phys. 2007. V. 102. № 8. P. 083305.
- Jianfei Li., Ying Wang, Zhongxiang Zhou, Jingfeng Yao, Jianlong Liu, Zhihao Lan, Chengxun Yuan. Experimental observations of communication in blackout, topological waveguiding and Dirac zero-index property in plasma sheath. Nanophotonics. 2023. V. 12. № 10. P. 1247.
- Xiao Jun Xing, Qing Zhao, Ling Zheng. Theoretical and experimental studies of magnetic field on electromagnetic wave propagation in plasma. Progress in electromagnetics research M. 2013. V. 30. P. 129.
- Linjing Guo, Lixin Guo. Effect of Plasma Sheath Velocity on Propagation of Electromagnetic Waves. IEEE Access. 2020. V. 8. P. 76158.
- Bai B.W., Li X.P., Liu Y.M., Xu J. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna. International Journal of Antennas and Propagation. 2015. 9 c.
- Bogatskaya A.V., Klenov N.V., Tereshonok M.V., Adjemov S.S., Popov A.M. Resonant interaction of electromagnetic wave with plasma layer and overcoming the radiocommunication blackout problem. J. Phys. D: Appl. Phys. 51. 2018.
- Bogatskaya A.V., Volkova E.A., Klenov N.V., Tereshonok M.V., Popov A.M. Toward the Nonstationary Theory of a Telecommunication Channel Through a Plasma Sheath. IEEE Transactions On Antennas And Propagation. 2020. V. 68. № 6. P. 4831.
- Bogatskaya A.V., Schegolev A.E., Klenov N.V., Lobov E.M, Tereshonok M.V., Popov A.M. Issues with modeling a tunnel communication channel through a plasma sheath. Sensors. 2022. 22. 398.

