500 rub
Journal Achievements of Modern Radioelectronics №1 for 2026 г.
Article in number:
Features of using simulation modeling in the development of next-generation radio telemetry systems for ensuring flight tests of rocket and space technology objects
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202601-01
UDC: 533.6, 53.07, 53.08, 533.9, 537.5
Authors:

V.S. Vasiliev1, A.V. Kashin2, A.S. Raevsky3, M.M. Ivoylova4, A.S. Kuziaev5

1,2,4,5 FSUE RFNC «All-Russian Research Institute of Experimental Physics» (Sarov, Russia)
3 Nizhny Novgorod state technical university named R.E. Alexeev (Nizhny Novgorod, Russia)
1 niiis@niiis.nnov.ru, 2 aKashin@niiis.nnov.ru, 3 raevsky_as@mail.ru, 4 maria.ivoilowa@yandex.ru, 5 admiral.2014@yandex.ru

Abstract:

Problem statement. Tests and intended use of rocket and space technology facilities are accompanied by monitoring of their technical condition and monitoring of various natural and man-made processes, for which various radio telemetry systems are being deve­loped. An important task at the present stage of the development of the test base is the development and implementation of approaches to optimize the structure and composition of radio telemetry systems, as well as the characteristics of its components for the requirements of a specific flight test, including taking into account the many changing characteristics of the radio channel, depending on the type of test object, the dynamic parameters of its trajectory, the conditions of a particular test site and even the time of year. Under such conditions, simulation modeling is a tool necessary to assess the condition of a non-stationary radio channel of a radio telemetry system, to select the optimal characteristics of the radio channel equipment, as well as to conduct research on the effectiveness of certain technical solutions in the creation and further improvement of digital radio channel equipment.

Goal. To consider the existing models of radio channels of communication systems and identify their main disadvantages, to develop a mathematical simulation model of a new-generation radio telemetry system with advantages over existing models, and to determine the prospects for its improvement.

Results. The disadvantages of existing models of radio channels of communication systems have been identified. A new generation simulation mathematical model of a radio telemetry system has been developed, which has such advantages over existing models as accounting for the error of synchronization systems, accounting for signal attenuation due to the polarization mismatch of the transmitting and receiving antennas, accounting for the rotation of the signal source around the longitudinal axis, accounting for the movement of the signal source and receiver. The model takes into account the signal structure used, its encoding methods, digital signal processing algorithms, principles for increasing noise immunity with spaced reception, estimating the power of diffusely scattered and reflected radiation components from the underlying surface, and the model takes into account for losses caused by the influence of plasma generated by the movement of high-speed objects in dense atmospheric layers. The software implementation of the model makes it possible to calculate the reliability of receiving information (the probability of bit and packet errors, bandwidth, reception reliability), determine the optimal placement of measuring (receiving) points of various bases in accordance with the described criterion, determine the requirements for individual characteristics of the radio telemetry system, ensuring the achievement of the required information content of the system and the reliability of receiving information transmitted from the test facility, if necessary, add additional parameters and functionality to the program. Further improvement of the developed simulation model is seen in deeper consideration of the effect on the passage of the telemetric signal of the plasma envelope surrounding the test object upon entry into the dense layers of the atmosphere.

Practical significance. The results can be used in the development and defining characteristics of new-generation radio telemetry systems to ensure flight tests of rocket and space technology facilities, and to conduct research on the effectiveness of certain technical solutions.

Pages: 9-17
For citation

Vasiliev V.S., Kashin A.V., Raevsky A.S., Ivoylova M.M., Kuziaev A.S. Features of using simulation modeling in the development
of next-generation radio telemetry systems for ensuring flight tests of rocket and space technology objects. Achieve­ments of modern radioelectronics. 2026. V. 80. № 1. P. 9–17. DOI: https://doi.org/10.18127/j20700784-202601-01 [in Russian]

References
  1. Nazarov A.V. i dr. Sovremennaya telemetriya v teorii i na praktike. SPb.: Nauka i texnika. 2007. 672 s. il.
  2. Denikeev A.B. Osnovny`e tipy` i osobennosti primeneniya sovremenny`x telemetricheskix sistem dlya raketny`x kompleksov razlichnogo naznacheniya. Nauchny`j e`lektronny`j zhurnal «Matricza nauchnogo poznaniya». 2022. № 3-2. S. 38–42.
  3. Pobedonoscev V.A. Kratkij ocherk razvitiya otechestvennoj raketnoj radiotelemetrii v 1946–2006 gg. na fone organizacii i razvitiya otrasli otechestvennogo raketostroeniya. Raketno-kosmicheskoe priborostroenie i informacionny`e sistemy`. 2016. T. 3. Vy`p. 2. S. 89–99.
  4. Pankin D.S. Analiz primeneniya telemetricheskix sredstv na kamchatskom poligone. Nauchny`j e`lektronny`j zhurnal «Matricza nauchnogo poznaniya». 2022. № 4-2. S. 124–129.
  5. Sistemy`, kompleksy`, datchiko-preobrazuyushhaya apparatura. NPO IT. Katalog produkcii. [E`lektronny`j resurs]: oficial`ny`j sajt AO «Rossijskie kosmicheskie sistemy`». URL: https://russianspacesystems.ru/wp-content/uploads/2020/07/Katalog_NPOIT.pdf.
  6. Prokof`ev V.K., Kulikov S.P. Bortovaya radiotelemetricheskaya sistema «Barrakuda-M». Datchiki i sistemy`: metody`, sredstva i texnologii polucheniya i obrabotki izmeritel`noj informacii (Datchiki i sistemy` – 2012): Mezhdunar. nauchno-texn. konf. s e`lementami nauchnoj shkoly` dlya molody`x ucheny`x. Pod red. E.A. Lomteva, A.G. Dmitrienko. Penza: Izd-vo PGU. 2012. 330 s.
  7. Dodonov A.G., Putyatin V.G. Radiotexnicheskie sredstva vneshnetraektorny`x izmerenij. Matematicheskie mashiny` i sistemy`. 2018. № 1. S. 3–30.
  8. Vasil`ev V.S. Razvitie telemetricheskix sistem peredachi informacii dlya letny`x ispy`tanij vy`sokoskorostny`x letatel`ny`x apparatov. Antenny`. 2025. № 2(294). S. 49–56.
  9. Savishhenko N.V., Ostroumov O.A., Lebeda E.V. Primenenie raznesennogo priyoma v kanalax svyazi s zamiraniyami dlya povy`sheniya pomexoustojchivosti. Sb. tr. XXIV Mezhdunar. nauchno-texn. konf. «Radiolokaciya, navigaciya, svyaz`». T. 1. Voronezh: OOO «Ve`lborn». 2018. S. 279–283.
  10. Maly`shev I.I., Shestopalov V.I., Mordovin A.I. Raznesenny`j priyom v kanalax svyazi s rajsovskimi zamiraniyami signalov. Teoriya i texnika radiosvyazi. 2021. № 1. S. 19–23.
  11. Fokin G.A. Modelirovanie mnogoluchevogo radiokanala. Informacionny`e texnologii i telekommunikacii. 2012. T. 9. № 1. S. 59–78.
  12. Strugov Yu.F., Semenov A.M., Dobrovol`skij S.M., Baty`rev I.A. Razrabotka imitatora mnogoluchevogo kanala svyazi s additivny`mi i mul`tiplikativny`mi pomexami. Texnika radiosvyazi. 2019. Vy`p. 4(43). S. 27–38.
  13. Dunikov A.S. Analiticheskaya programmno-vremennaya model` radiokanala peredachi telemetricheskoj informacii s borta letatel`nogo apparata. Voprosy` e`lektromexaniki Trudy` VNIIE`M. 2022. T. 190. № 5. S. 21–30.
  14. Annenkov A.M. Model` radiokanala s chastotnoj modulyaciej i neprery`vnoj fazoj. Zhurnal radioe`lektroniki. 2011. № 7. [E`lektronny`j resurs]. Rezhim dostupa: http://jre.cplire.ru/koi/iul11/8/text.pdf.
  15. Harada H., Prasad R. Simulation and software radio for mobile communications. Artech House. 2002. 448 p.
  16. Radio Mobile. Radio Propagation and Radio Coverage Computer Simulation Program. Program Operating Guide. Brian J. Henderson P. Eng VE6ZG, Calgary, Alberta, Canada, December 30, 2011. [E`lektronny`j resurs]. Rezhim dostupa: https://softdeluxe.com/Radio-Mobile-228884.
  17. Modeli rasprostraneniya radiovoln. [E`lektronny`j resurs]: sajt TelekomProekt. Rezhim dostupa: http://telecomproject.tripod.com/mod.html.
  18. Svyaz` s podvizhny`mi ob``ektami v diapazone SVCh. Pod red. U.K. Dzhejksa, per. s angl. pod red. M.S. Yarly`kova, M.V. Chernyakova. M.: Svyaz`. 1979 520 s.
  19. Fetisov S. RadioMobile Illyustrirovannoe rukovodstvo pol`zovatelya. [E`lektronny`j resurs]. Rezhim dostupa: https://disk.yandex.ru/d/ K0XxJPMMVfNxc.
  20. Programmny`j kompleks «Territoriya» (Versiya 5.2). Rukovodstvo pol`zovatelya. SPb.: ZAO «Informacionny`j kosmicheskij centr «Severnaya korona». 2013. 84 s. [E`lektronny`j resurs]. Rezhim dostupa: https://spactctnter.ru/Rtsurses/Terraindoc.pdf.
  21. Vasil`ev V.S., Ivlev D.N., Orlov I.Ya., Semenov V.Yu. Modelirovanie telemetricheskoj sistemy` peredachi informacii s uchyotom slozhnogo xaraktera dvizheniya ob``ekta kontrolya. Vestnik Povolzhskogo gosudarstvennogo texnologicheskogo universiteta. Ser.: Radiotexnicheskie i infokommunikacionny`e sistemy`. 2024. № 1 (61). S. 6–22.
  22. Bugrov V.N., Vasil`ev V.S., Ivlev D.N. Optimizaciya raspolozheniya priyomny`x punktov radiotelemetricheskoj sistemy` kontrolya vozdushny`x ob``ektov. Vestnik Povolzhskogo gosudarstvennogo texnologicheskogo universiteta. Ser.: Radiotexnicheskie i infokommunikacionny`e sistemy`. 2024. № 2 (62). S. 32–43.
  23. Vasil`ev V.S. Issledovanie vliyaniya polyarizacionnogo rassoglasovaniya v telemetricheskom kanale svyazi v usloviyax slozhnogo xaraktera dvizheniya ob``ekta kontrolya. Uspexi sovremennoj radioe`lektroniki. 2025. T. 79. № 9. S. 5–14.
  24. Shi Lei, Zhao Lei, Yao Bo, Li Xiaoping. Telemetry Channel Capacity Assessment for Reentry Vehicles in Plasma Sheath Environment. Plasma Sci. Technol. 2015. V. 17. P. 1006.
  25. Sha Y.X., Zhang H.L., Guo X.Y., Xia M.Y. Analyses of Electromagnetic Properties of a Hypersonic Object With Plasma Sheath. IEEE Transactions On Antennas And Propagation. 2019. V. 67. № 4. P. 2470.
  26. Tereshonok M.V., Klenov N.V., Lobov E.M., Shubin D.N., Kandaurov N.A., Lipatkin V.I. Signal`ny`e konstrukcii dlya komandno-telemetricheskoj radiolinii svyazi so spuskaemy`mi kosmicheskimi apparatami. Radiotexnika i e`lektronika. 2022. T. 67. № 3. C. 294.
  27. Korotkevich A.O., Newell A.C., Zakharov V.E. Communication through plasma sheaths. J. Appl. Phys. 2007. V. 102. № 8. P. 083305.
  28. Shi L., Guo B.L., Liu Y.M., Li J.T. Characteristic of plasma sheath channel and its effect on communication. Prog. Electromagn. Res. 2015. V. 123. P. 321.
  29. Zhao L., Bai B.W., Bao W.M., Li X.P. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property. International Journal of Antennas and Propagation. 2013. 8 p.
  30. Linjing Guo, Lixin Guo. Effect of Plasma Sheath Velocity on Propagation of Electromagnetic Waves. IEEE Access. 2020. V. 8. P. 76158.
Date of receipt: 10.10.2025
Approved after review: 22.10.2025
Accepted for publication: 13.11.2025