350 rub
Journal Achievements of Modern Radioelectronics №6 for 2025 г.
Article in number:
Development of a spacecraft orientation sensor in the ultraviolet and soft X-ray spectral range
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202506-04
UDC: 629.78
Authors:

M.A. Karpov1, M.A. Ryzhkov2, G.A. Miloradov3, E.V. Soldatov4, V.V. Bleko5

1–5 MIREA – Russian University of Technology (Moscow, Russia)
1 maksim.karpov@gmail.com

Abstract:

One of the main units of the orientation systems of a spacecraft (SC) is the orientation module using the star map. Its operating principle consists of continuous shooting of a picture of outer space through a special lens, subsequent registration of it on a digital photodetector and subsequent search for stars in the resulting image. The SC's autonomous memory contains a star map with the stars on it. When comparing the star coordinates obtained by the orientation system with those in the memory, a corresponding command is issued to the SC's orientation corrector, if necessary. Since such orientation systems use photosensitive CCD and CMOS sensors sensitive in the optical wavelength range, equipped with high-aperture optics, they have a number of disadvantages: when the sun enters the device's field of view, the sensor is overloaded, as a result of which it ceases to function normally. Also, in the case of
using low-orbit satellites and in the case of targeted counteraction from the earth's surface using high-power lasers, it is possible to lose long-term orientation due to sensor failure, even if their optical axes are not directed at the earth's surface.

Therefore, the creation of spacecraft orientation sensors that are insensitive to sunlight and laser radiation is an urgent task.

One of the methods for providing spacecraft orientation systems that are insensitive to parasitic solar and terrestrial radiation is the use of solar-blind sensors operating in the spectral range of vacuum ultraviolet (VUV) and soft X-ray radiation (SXR). This is especia­lly relevant for modern orbital astronomical space observatories.

Pages: 36-42
For citation

Karpov M.A., Ryzhkov M.A., Miloradov G.A., Soldatov E.V., Bleko V.V. Development of a spacecraft orientation sensor in the ultraviolet and soft x-ray spectral range. Achievements of modern radioelectronics. 2025. V. 79. № 6. P. 36–42. DOI: https://doi.org/10.18127/ j20700784-202506-04 [in Russian]

References
  1. Dyatlov S.A., Bessonov R.V. Obzor zvyozdny`x datchikov orientacii kosmicheskix apparatov / Vseros. nauchno-texn. konf. «Sovremenny`e problemy` opredeleniya orientacii i navigacii kosmicheskix apparatov»: Sb. trudov / Red. V.S. Kornilenko. Tarusa: Institut kosmicheskix issledovanij Rossijskoj akademii nauk. 2008. S. 11–32.
  2. Karpov M.A., Egorova E.V., Nefedov V.I. Metody` povy`sheniya tochnosti opredeleniya orientacii kosmicheskix apparatov pri ispol`zovanii opticheskix zvezdny`x datchikov s e`lektronno-opticheskimi preobrazovatelyami. E`lektromagnitny`e volny` i e`lektronny`e sistemy`. 2012. T. 17. № 1. S. 27–31.
  3. Sigov A.S., Karpov M.A., Denisevich V.N. i dr. Povy`shenie tochnosti opredeleniya orientacii kosmicheskix apparatov pri ispol`zovanii opticheskix zvezdny`x datchikov. Fundamental`ny`e problemy` radioe`lektronnogo priborostroeniya. 2012. T. 12. № 4. S. 62–66.
  4. Egorova E.V., Karpov M.A., Markin A.A. Optiko-e`lektronny`j trakt v sistemax orientacii kosmicheskix apparatov. Fundamental`ny`e problemy` radioe`lektronnogo priborostroeniya. 2012. T. 12. № 5. S. 149–153.
  5. Karpov M.A., Egorova E.V., Nefedov V.I. i dr. Povy`shenie tochnosti orientacii kosmicheskix apparatov putem ispol`zovaniya opti­cheskix datchikov s e`lektronno-opticheskimi preobrazovatelyami. Fundamental`ny`e problemy` radioe`lektronnogo priborostroeniya. 2011. T. 11. № 1. S. 153–156.
  6. Velez M.A., Retherford K.D., Hue V., Kammer Jo.A., Becker T.M., Gladstoneet G.R. al. Catalog of Ultraviolet Bright Stars (CUBS): Stra­tegies for UV occultation measurements, planetary illumination modeling, and sky map analyses using hybrid IUE-Kurucz spectra. The Planetary Science Journal. 2023. V. 5. № 4.
  7. Ladislas Wiza Jo. Microchannel plate detectors. Nuclear Instruments and Methods. 1979. V. 162. Iss. 1–3. P. 587–601. https://doi.org/ 10.1016/0029-554X(79)90734-1
  8. Matsuura S., Umebayashi S., Okuyama C. and Oba K. Characteristics of the Newly Developed MCP and Its Assembly. in IEEE Transactions on Nuclear Science. 1985. V. 32. № 1. R. 350–354. doi: 10.1109/TNS.1985.4336854
  9. Tremsin A.S., Vallerga J.V. Unique capabilities and applications of Microchannel Plate (MCP) detectors with Medipix/Timepix readout. Radiation Measurements. 2020. V. 130. 106228. https://doi.org/10.1016/j.radmeas.2019.106228
  10. Nusinov M.D. Kosmicheskij vakuum i nadezhnost` kosmicheskoj texniki. M.: Znanie. 1986. 64 s.
  11. Henke B.L., Gullikson E.M. and Davis J.C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. Atomic Data and Nuclear Data Tables. July 1993. V. 54. № 2. R. 181–342.
Date of receipt: 19.02.2025
Approved after review: 28.02.2025
Accepted for publication: 20.05.2025