350 rub
Journal Achievements of Modern Radioelectronics №6 for 2025 г.
Article in number:
Technologies for the formation of a piezoelectric transducer on the surface of an acousto-optic modulator crystal
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202506-03
UDC: 001.891.53
Authors:

P.V. Silivonik1, A.I. Kryukov2, G.A. Sharapov3

1, 2 MIREA – Russian Technological University (Moscow, Russia)
3 JSC «Central radio-research institute named after academician A.I. Berg» (Moscow, Russia)
1 pavel@silivonik.ru, 2 akrukov1997@mail.ru, 3 sarius1990@ya.ru

Abstract:

Research into the application of multi-element transducers in acousto-optic modulators and deflectors has been conducted in several domestic and foreign studies. It has been found that multi-element transducers offer advantages over single-element ones, primarily due to their ability to generate a scanning acoustic beam with frequency variation. This leads to an expanded operational frequency range of the device. Furthermore, the focusing of acoustic energy into several main maxima (lobes) of the radiation pattern helps achieve relatively high diffraction efficiency (~2-4%/W) across the entire operational frequency band due to isotropic light diffraction on the acoustic beam. However, despite these advantages, multi-element transducers have one significant drawback. Depending on the magnitude of the phase shift between the elements of the driving structure, the radiation pattern of the generated acoustic field may have two or three main maxima (lobes). Since the operation of the acousto-optic device occurs at a selected lobe, this results in undesirable losses of acoustic energy and reduces the diffraction efficiency of the deflector. The paper presents the results of fundamental research into existing technologies for the formation of piezoelectric transducers on the surface of high-frequency crystals for acousto-optic modulators. Based on existing solutions, a technology for the formation of a piezoelectric transducer on the surface of the sapphire crystal structure for an acousto-optic modulator has been proposed.

Pages: 28-35
For citation

Silivonik P.V., Kryukov A.I., Sharapov G.A. Technologies for the formation of a piezoelectric transducer on the surface of an acousto-optic modulator crystal. Achievements of modern radioelectronics. 2025. V. 79. № 6. P. 28–35. DOI: https://doi.org/10.18127/j20700784-202506-03 [in Russian]
 

References
  1. Goutzoulis A., Pape D. Design and Fabrication of Acousto-Optic Devices. New York: Marcel Dekker. 1994. 520 s.
  2. Magdich L.N., Molchanov V.Ya. Akustoopticheskie ustrojstva i ix primenenie. M.: Radio i svyaz`. 1978.
  3. Shibaev S.S., Pomazanov A.V., Volik D.P. Metody` i sredstva akustoopticheskix izmerenij: uchebnoe posobie. Rostov-na-Donu – Taganrog: Izd-vo YuFU. 2018. 124 s.
  4. Kolesnikov A.I., Molchanov V.Ya., Kaplunov I.A. i dr. Akustooptika. Tver`: TvGU. 2011. 112 s
  5. D`elesan E`., Ruaje D. Uprugie volny` v tverdy`x telax. M.: Nauka. 1982. 424 s.
  6. Chizhikov S.I., Molchanov V.Ya. Sposob izgotovleniya akustoopticheskix modulyatorov. Patent RF na izobretenie № 2461097, 03.03.2011 g.
  7. Diffuzionnaya svarka materialov: Spravochnik / Pod red. N.F. Kazakova. M.: Mashinostroenie. 1981.
  8. Cherny`shov Yu.L., Kurdin Yu.A. Svarka kristallov izdelij tverdotel`noj e`lektroniki. Obzory` po e`lektronnoj texnike. Ser. «Texnologiya, organizaciya proizvodstva i oborudovanie». 1980. V. 4 (710).
  9. Shimatsu T., Uomoto M. Atomic diffusion bonding of wafers with thin nanocrystalline metal films. Journal of Vacuum Science & Technology B. 2010. V. 28. № 4. P. 706.
  10. Nagisetty S.S., Severova P., Miura T. Lasing and thermal characteristics of Yb:YAG/YAG compo-site with atomic diffusion bonding. Laser Physics Letters. 2017. V. 14. № 1. P. 015001.
  11. Sittig E.K., Cook N.D. A method for preparing and bonding ultrasonic transducers used in high frequency digital delay lines. Proc. IEEE. 1968. V. 56. № 8. P. 1375–1376.
  12. Finstad T.G., Andreassen T., Olsen T. Characterization of evaporated gold-indium films on semi-conductors. Thin Solid Films. 1975. № 29. P. 145–154.
  13. Simic V., Marincovic Z. Thin film interdiffusion of Au and In at room temperature. Thin Solid Films. 1977. V. 41. P. 57–61.
  14. Bjontegaard J., Buene L., Finstad T., Lonsjo O. and Olsen T. Low temperature Interdiffusion in Au In Thin Film Couples. Thin Solid Films. 1983. V. 101. P. 253–262.
  15. Sohn Y.-C., Wang Q., Ham S.-J. Wafer-level low temperature bonding with Au-In system / Proc. 57th Electronic Components and Technology Conference. Reno, NV: IEEE. 2007. P. 633.
  16. Akusticheskie kristally` / Pod red. M.P. Shaskol`skoj. M.: Nauka. 1992.
  17. Balakshij V.I., Pary`gin V.N., Chirkov L.E. Fizicheskie osnovy` akustooptiki. M.: Radio i svyaz`. 1985.
  18. Xu J., Stroud R. Acousto-optic devices. New York: Wiley. 1992.
  19. Goutzoulis A.P., Pape D.R. Design and fabrication of acousto-optics devices. New York: Marcel Dekker. 1994.
  20. Yariv A., Yux P. Opticheskie volny` v kristallax. M.: Mir. 1987.
Date of receipt: 17.02.2025
Approved after review: 03.03.2025
Accepted for publication: 20.05.2025